Skip to main content
Log in

Improved FPT Algorithms for Deletion to Forest-Like Structures

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

The Feedback Vertex Set problem is undoubtedly one of the most well-studied problems in Parameterized Complexity. In this problem, given an undirected graph G and a non-negative integer k, the objective is to test whether there exists a subset \(S\subseteq V(G)\) of size at most k such that \(G-S\) is a forest. After a long line of improvement, recently, Li and Nederlof [TALG, 2022] designed a randomized algorithm for the problem running in time \({\mathcal {O}}^{\star }(2.7^k)^{*}\). In the Parameterized Complexity literature, several problems around Feedback Vertex Set have been studied. Some of these include Independent Feedback Vertex Set (where the set S should be an independent set in G), Almost Forest Deletion and Pseudoforest Deletion. In Pseudoforest Deletion, each connected component in \(G-S\) has at most one cycle in it. However, in Almost Forest Deletion, the input is a graph G and non-negative integers \(k,\ell \in {{\mathbb {N}}}\), and the objective is to test whether there exists a vertex subset S of size at most k, such that \(G-S\) is \(\ell \) edges away from a forest. In this paper, using the methodology of Li and Nederlof [TALG, 2022], we obtain the current fastest algorithms for all these problems. In particular we obtain the following randomized algorithms.

  1. 1.

    Independent Feedback Vertex Set can be solved in time \({\mathcal {O}}^{\star }(2.7^k)\).

  2. 2.

    Pseudo Forest Deletion can be solved in time \({\mathcal {O}}^{\star }(2.85^k)\).

  3. 3.

    Almost Forest Deletion can be solved in time \({\mathcal {O}}^{\star }(\min \{2.85^k \cdot 8.54^\ell ,2.7^k \cdot 36.61^\ell ,3^k \cdot 1.78^\ell \})\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Algorithm 1
Algorithm 2
Algorithm 3
Algorithm 4
Algorithm 5
Algorithm 6
Algorithm 7
Algorithm 8
Algorithm 9

Similar content being viewed by others

Notes

  1. A cut \((V_1, V_2)\) of \(G=(V,E)\) is consistent if \(\forall u\in V_1, v\in V_2\), \((u,v)\notin E\)

  2. We use the notation exp(x) to denote the function \(e^x\).

References

  1. Festa, P., Pardalos, P.M., Resende, M.G.C.: In: Du, D.-Z., Pardalos, P.M. (eds.) Feedback Set Problems, pp. 209–258. Springer, Boston, MA (1999). https://doi.org/10.1007/978-1-4757-3023-4_4

  2. Bodlaender, H.L.: On disjoint cycles. In: Schmidt, G., Berghammer, R. (eds.) Graph-Theoretic Concepts in Computer Science, pp. 230–238. Springer, Berlin, (1992). https://doi.org/10.1007/3-540-55121-2_24

  3. Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Clote, P., Remmel, J.B. (eds.) Feasible Mathematics II, pp. 219–244. Birkhäuser Boston, Boston, MA (1995). https://doi.org/10.1007/978-1-4612-2566-9_7

  4. Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for undirected feedback vertex set. In: Bose, P., Morin, P. (eds.) Algorithms and Computation, pp. 241–248. Springer, Berlin, (2002). https://doi.org/10.1007/3-540-36136-7_22

  5. Dehne, F.K.H.A., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An \({\cal{O} }(2^{{\cal{O} }(k)} n^{3})\) FPT algorithm for the undirected feedback vertex set problem. Theory Comput. Syst. 41(3), 479–492 (2007). https://doi.org/10.1007/11533719_87

    Article  MathSciNet  Google Scholar 

  6. Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396 (2006). https://doi.org/10.1016/j.jcss.2006.02.001

    Article  MathSciNet  Google Scholar 

  7. Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop cutset problem. J. Artif. Int. Res. 12(1), 219–234 (2000). https://doi.org/10.5555/1622248.1622256

    Article  MathSciNet  Google Scholar 

  8. Cao, Y.: A naive algorithm for feedback vertex set. In: Seidel, R. (ed.) 1st Symposium on simplicity in algorithms (SOSA 2018). Open Access Series in Informatics (OASIcs), vol. 61, pp. 1–119. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2018). https://doi.org/10.4230/OASIcs.SOSA.2018.1

  9. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set: New measure and new structures. Algorithmica 73(1), 63–86 (2015). https://doi.org/10.1007/s00453-014-9904-6

    Article  MathSciNet  Google Scholar 

  10. Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008). https://doi.org/10.1016/j.jcss.2008.05.002

    Article  MathSciNet  Google Scholar 

  11. Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., Rooij, J.M.M.v., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 150–159 (2011). https://doi.org/10.1109/FOCS.2011.23

  12. Iwata, Y., Kobayashi, Y.: Improved analysis of highest-degree branching for feedback vertex set. Algorithmica 83(8), 2503–2520 (2021). https://doi.org/10.1007/s00453-021-00815-w

    Article  MathSciNet  Google Scholar 

  13. Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10), 556–560 (2014). https://doi.org/10.1016/j.ipl.2014.05.001

    Article  MathSciNet  Google Scholar 

  14. Li, J., Nederlof, J.: Detecting feedback vertex sets of size \(k\) in \({O}^\star (2.7^k)\) time. ACM Trans. Algorithms 18(4) (2022) https://doi.org/10.1145/3504027

  15. Misra, N., Philip, G., Raman, V., Saurabh, S., Sikdar, S.: FPT algorithms for connected feedback vertex set. J. Combinat. Opt. 24(2), 131–146 (2012). https://doi.org/10.1007/s10878-011-9394-2

    Article  MathSciNet  Google Scholar 

  16. Agrawal, A., Gupta, S., Saurabh, S., Sharma, R.: Improved algorithms and combinatorial bounds for independent feedback vertex set. In: Guo, J., Hermelin, D. (eds.) 11th International Symposium on Parameterized and Exact Computation (IPEC 2016). Leibniz International Proceedings in Informatics (LIPIcs), vol. 63, pp. 2–1214. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2017). https://doi.org/10.4230/LIPIcs.IPEC.2016.2

  17. Li, S., Pilipczuk, M.: An improved FPT algorithm for independent feedback vertex set. Theory Comput. Syst. 64(8), 1317–1330 (2020). https://doi.org/10.1007/s00224-020-09973-w

    Article  MathSciNet  Google Scholar 

  18. Misra, N., Philip, G., Raman, V., Saurabh, S.: On parameterized independent feedback vertex set. Theor. Comput. Sci. 461, 65–75 (2012). 17th International Computing and Combinatorics Conference (COCOON 2011). https://doi.org/10.1016/j.tcs.2012.02.012 .

  19. Agrawal, A., Lokshtanov, D., Mouawad, A.E., Saurabh, S.: Simultaneous feedback vertex set: A parameterized perspective. ACM Trans. Comput. Theory 10(4) (2018) https://doi.org/10.1145/3265027

  20. Ye, J.: A note on finding dual feedback vertex set. CoRR abs/1510.00773 (2015) arXiv:1510.00773

  21. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback vertex set is fixed-parameter tractable. SIAM J. Disc. Math. 27(1), 290–309 (2013). https://doi.org/10.1137/110843071

    Article  MathSciNet  Google Scholar 

  22. Iwata, Y., Wahlström, M., Yoshida, Y.: Half-integrality, LP-branching, and FPT algorithms. SIAM J. Comput. 45(4), 1377–1411 (2016). https://doi.org/10.1137/140962838

    Article  MathSciNet  Google Scholar 

  23. Iwata, Y., Yamaguchi, Y., Yoshida, Y.: 0/1/all CSPs, half-integral A-path packing, and linear-time FPT algorithms. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 462–473. IEEE Computer Society, Los Alamitos, CA, USA (2018). https://doi.org/10.1109/FOCS.2018.00051

  24. Kawarabayashi, K.-I., Kobayashi, Y.: Fixed-parameter tractability for the subset feedback set problem and the S-cycle packing problem. J. Comb. Theory Ser. B 102(4), 1020–1034 (2012). https://doi.org/10.1016/j.jctb.2011.12.001

    Article  MathSciNet  Google Scholar 

  25. Lokshtanov, D., Ramanujan, M.S., Saurabh, S.: Linear time parameterized algorithms for subset feedback vertex set. ACM Trans. Algorithms 14(1) (2018) https://doi.org/10.1145/3155299

  26. Bodlaender, H.L., Ono, H., Otachi, Y.: A faster parameterized algorithm for pseudoforest deletion. Discret. Appl. Math. 236, 42–56 (2018) https://doi.org/10.1016/j.dam.2017.10.018

  27. Philip, G., Rai, A., Saurabh, S.: Generalized pseudoforest deletion: Algorithms and uniform kernel. SIAM J. Discret. Math. 32(2), 882–901 (2018). https://doi.org/10.1137/16M1100794

    Article  MathSciNet  Google Scholar 

  28. Rai, A., Saurabh, S.: Bivariate complexity analysis of almost forest deletion. Theor. Comput. Sci. 708, 18–33 (2018) https://doi.org/10.1016/j.tcs.2017.10.021

  29. Lin, M., Feng, Q., Wang, J., Chen, J., Fu, B., Li, W.: An improved FPT algorithm for almost forest deletion problem. Inf. Process. Lett. 136, 30–36 (2018) https://doi.org/10.1016/j.ipl.2018.03.016

  30. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inversion. Combinatorica 7(1), 105–113 (1987). https://doi.org/10.1007/bf02579206

    Article  MathSciNet  Google Scholar 

  31. Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation. ISSAC ’14, pp. 296–303. Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2608628.2608664

  32. Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: A bound on the pathwidth of sparse graphs with applications to exact algorithms. SIAM J. Discrete Math. 23, 407–427 (2009) https://doi.org/10.1137/080715482

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their valuable and constructive comments. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 819416) and Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kishen N. Gowda.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Polynomial dependency on the input size n is hidden in \({\mathcal {O}}^{\star }\) notation.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gowda, K.N., Lonkar, A., Panolan, F. et al. Improved FPT Algorithms for Deletion to Forest-Like Structures. Algorithmica 86, 1657–1699 (2024). https://doi.org/10.1007/s00453-023-01206-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-023-01206-z

Keywords

Mathematics Subject Classification