Abstract
The Feedback Vertex Set problem is undoubtedly one of the most well-studied problems in Parameterized Complexity. In this problem, given an undirected graph G and a non-negative integer k, the objective is to test whether there exists a subset \(S\subseteq V(G)\) of size at most k such that \(G-S\) is a forest. After a long line of improvement, recently, Li and Nederlof [TALG, 2022] designed a randomized algorithm for the problem running in time \({\mathcal {O}}^{\star }(2.7^k)^{*}\). In the Parameterized Complexity literature, several problems around Feedback Vertex Set have been studied. Some of these include Independent Feedback Vertex Set (where the set S should be an independent set in G), Almost Forest Deletion and Pseudoforest Deletion. In Pseudoforest Deletion, each connected component in \(G-S\) has at most one cycle in it. However, in Almost Forest Deletion, the input is a graph G and non-negative integers \(k,\ell \in {{\mathbb {N}}}\), and the objective is to test whether there exists a vertex subset S of size at most k, such that \(G-S\) is \(\ell \) edges away from a forest. In this paper, using the methodology of Li and Nederlof [TALG, 2022], we obtain the current fastest algorithms for all these problems. In particular we obtain the following randomized algorithms.
-
1.
Independent Feedback Vertex Set can be solved in time \({\mathcal {O}}^{\star }(2.7^k)\).
-
2.
Pseudo Forest Deletion can be solved in time \({\mathcal {O}}^{\star }(2.85^k)\).
-
3.
Almost Forest Deletion can be solved in time \({\mathcal {O}}^{\star }(\min \{2.85^k \cdot 8.54^\ell ,2.7^k \cdot 36.61^\ell ,3^k \cdot 1.78^\ell \})\).









Similar content being viewed by others
Notes
A cut \((V_1, V_2)\) of \(G=(V,E)\) is consistent if \(\forall u\in V_1, v\in V_2\), \((u,v)\notin E\)
We use the notation exp(x) to denote the function \(e^x\).
References
Festa, P., Pardalos, P.M., Resende, M.G.C.: In: Du, D.-Z., Pardalos, P.M. (eds.) Feedback Set Problems, pp. 209–258. Springer, Boston, MA (1999). https://doi.org/10.1007/978-1-4757-3023-4_4
Bodlaender, H.L.: On disjoint cycles. In: Schmidt, G., Berghammer, R. (eds.) Graph-Theoretic Concepts in Computer Science, pp. 230–238. Springer, Berlin, (1992). https://doi.org/10.1007/3-540-55121-2_24
Downey, R.G., Fellows, M.R.: Parameterized computational feasibility. In: Clote, P., Remmel, J.B. (eds.) Feasible Mathematics II, pp. 219–244. Birkhäuser Boston, Boston, MA (1995). https://doi.org/10.1007/978-1-4612-2566-9_7
Raman, V., Saurabh, S., Subramanian, C.R.: Faster fixed parameter tractable algorithms for undirected feedback vertex set. In: Bose, P., Morin, P. (eds.) Algorithms and Computation, pp. 241–248. Springer, Berlin, (2002). https://doi.org/10.1007/3-540-36136-7_22
Dehne, F.K.H.A., Fellows, M.R., Langston, M.A., Rosamond, F.A., Stevens, K.: An \({\cal{O} }(2^{{\cal{O} }(k)} n^{3})\) FPT algorithm for the undirected feedback vertex set problem. Theory Comput. Syst. 41(3), 479–492 (2007). https://doi.org/10.1007/11533719_87
Guo, J., Gramm, J., Hüffner, F., Niedermeier, R., Wernicke, S.: Compression-based fixed-parameter algorithms for feedback vertex set and edge bipartization. J. Comput. Syst. Sci. 72(8), 1386–1396 (2006). https://doi.org/10.1016/j.jcss.2006.02.001
Becker, A., Bar-Yehuda, R., Geiger, D.: Randomized algorithms for the loop cutset problem. J. Artif. Int. Res. 12(1), 219–234 (2000). https://doi.org/10.5555/1622248.1622256
Cao, Y.: A naive algorithm for feedback vertex set. In: Seidel, R. (ed.) 1st Symposium on simplicity in algorithms (SOSA 2018). Open Access Series in Informatics (OASIcs), vol. 61, pp. 1–119. Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2018). https://doi.org/10.4230/OASIcs.SOSA.2018.1
Cao, Y., Chen, J., Liu, Y.: On feedback vertex set: New measure and new structures. Algorithmica 73(1), 63–86 (2015). https://doi.org/10.1007/s00453-014-9904-6
Chen, J., Fomin, F.V., Liu, Y., Lu, S., Villanger, Y.: Improved algorithms for feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008). https://doi.org/10.1016/j.jcss.2008.05.002
Cygan, M., Nederlof, J., Pilipczuk, M., Pilipczuk, M., Rooij, J.M.M.v., Wojtaszczyk, J.O.: Solving connectivity problems parameterized by treewidth in single exponential time. In: 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science, pp. 150–159 (2011). https://doi.org/10.1109/FOCS.2011.23
Iwata, Y., Kobayashi, Y.: Improved analysis of highest-degree branching for feedback vertex set. Algorithmica 83(8), 2503–2520 (2021). https://doi.org/10.1007/s00453-021-00815-w
Kociumaka, T., Pilipczuk, M.: Faster deterministic feedback vertex set. Inf. Process. Lett. 114(10), 556–560 (2014). https://doi.org/10.1016/j.ipl.2014.05.001
Li, J., Nederlof, J.: Detecting feedback vertex sets of size \(k\) in \({O}^\star (2.7^k)\) time. ACM Trans. Algorithms 18(4) (2022) https://doi.org/10.1145/3504027
Misra, N., Philip, G., Raman, V., Saurabh, S., Sikdar, S.: FPT algorithms for connected feedback vertex set. J. Combinat. Opt. 24(2), 131–146 (2012). https://doi.org/10.1007/s10878-011-9394-2
Agrawal, A., Gupta, S., Saurabh, S., Sharma, R.: Improved algorithms and combinatorial bounds for independent feedback vertex set. In: Guo, J., Hermelin, D. (eds.) 11th International Symposium on Parameterized and Exact Computation (IPEC 2016). Leibniz International Proceedings in Informatics (LIPIcs), vol. 63, pp. 2–1214. Schloss Dagstuhl—Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2017). https://doi.org/10.4230/LIPIcs.IPEC.2016.2
Li, S., Pilipczuk, M.: An improved FPT algorithm for independent feedback vertex set. Theory Comput. Syst. 64(8), 1317–1330 (2020). https://doi.org/10.1007/s00224-020-09973-w
Misra, N., Philip, G., Raman, V., Saurabh, S.: On parameterized independent feedback vertex set. Theor. Comput. Sci. 461, 65–75 (2012). 17th International Computing and Combinatorics Conference (COCOON 2011). https://doi.org/10.1016/j.tcs.2012.02.012 .
Agrawal, A., Lokshtanov, D., Mouawad, A.E., Saurabh, S.: Simultaneous feedback vertex set: A parameterized perspective. ACM Trans. Comput. Theory 10(4) (2018) https://doi.org/10.1145/3265027
Ye, J.: A note on finding dual feedback vertex set. CoRR abs/1510.00773 (2015) arXiv:1510.00773
Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback vertex set is fixed-parameter tractable. SIAM J. Disc. Math. 27(1), 290–309 (2013). https://doi.org/10.1137/110843071
Iwata, Y., Wahlström, M., Yoshida, Y.: Half-integrality, LP-branching, and FPT algorithms. SIAM J. Comput. 45(4), 1377–1411 (2016). https://doi.org/10.1137/140962838
Iwata, Y., Yamaguchi, Y., Yoshida, Y.: 0/1/all CSPs, half-integral A-path packing, and linear-time FPT algorithms. In: 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pp. 462–473. IEEE Computer Society, Los Alamitos, CA, USA (2018). https://doi.org/10.1109/FOCS.2018.00051
Kawarabayashi, K.-I., Kobayashi, Y.: Fixed-parameter tractability for the subset feedback set problem and the S-cycle packing problem. J. Comb. Theory Ser. B 102(4), 1020–1034 (2012). https://doi.org/10.1016/j.jctb.2011.12.001
Lokshtanov, D., Ramanujan, M.S., Saurabh, S.: Linear time parameterized algorithms for subset feedback vertex set. ACM Trans. Algorithms 14(1) (2018) https://doi.org/10.1145/3155299
Bodlaender, H.L., Ono, H., Otachi, Y.: A faster parameterized algorithm for pseudoforest deletion. Discret. Appl. Math. 236, 42–56 (2018) https://doi.org/10.1016/j.dam.2017.10.018
Philip, G., Rai, A., Saurabh, S.: Generalized pseudoforest deletion: Algorithms and uniform kernel. SIAM J. Discret. Math. 32(2), 882–901 (2018). https://doi.org/10.1137/16M1100794
Rai, A., Saurabh, S.: Bivariate complexity analysis of almost forest deletion. Theor. Comput. Sci. 708, 18–33 (2018) https://doi.org/10.1016/j.tcs.2017.10.021
Lin, M., Feng, Q., Wang, J., Chen, J., Fu, B., Li, W.: An improved FPT algorithm for almost forest deletion problem. Inf. Process. Lett. 136, 30–36 (2018) https://doi.org/10.1016/j.ipl.2018.03.016
Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inversion. Combinatorica 7(1), 105–113 (1987). https://doi.org/10.1007/bf02579206
Le Gall, F.: Powers of tensors and fast matrix multiplication. In: Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation. ISSAC ’14, pp. 296–303. Association for Computing Machinery, New York, NY, USA (2014). https://doi.org/10.1145/2608628.2608664
Kneis, J., Mölle, D., Richter, S., Rossmanith, P.: A bound on the pathwidth of sparse graphs with applications to exact algorithms. SIAM J. Discrete Math. 23, 407–427 (2009) https://doi.org/10.1137/080715482
Acknowledgements
The authors are grateful to the anonymous reviewers for their valuable and constructive comments. This project has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No 819416) and Swarnajayanti Fellowship grant DST/SJF/MSA-01/2017-18.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors have no competing interests to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Polynomial dependency on the input size n is hidden in \({\mathcal {O}}^{\star }\) notation.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Gowda, K.N., Lonkar, A., Panolan, F. et al. Improved FPT Algorithms for Deletion to Forest-Like Structures. Algorithmica 86, 1657–1699 (2024). https://doi.org/10.1007/s00453-023-01206-z
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-023-01206-z
Keywords
- Parameterized complexity
- Independent feedback vertex set
- Pseudo forest
- Almost forest
- Cut and count
- Treewidth