Abstract
We consider the graph sandwich problem and introduce almost monotone properties, for which the sandwich problem can be reduced to the recognition problem. We show that the property of containing a graph in \({\mathcal {C}}\) as an induced subgraph is almost monotone if \({\mathcal {C}}\) is the set of thetas, the set of pyramids, or the set of prisms and thetas. We show that the property of containing a hole of length \(\equiv j \mod n\) is almost monotone if and only if \(j \equiv 2 \mod n\) or \(n \le 2\). Moreover, we show that the imperfect graph sandwich problem, also known as the Berge trigraph recognition problem, can be solved in polynomial time. We also study the complexity of several graph decompositions related to perfect graphs, namely clique cutset, (full) star cutset, homogeneous set, homogeneous pair, and 1-join, with respect to the partitioned and unpartitioned probe problems. We show that the clique cutset and full star cutset unpartitioned probe problems are NP-hard. We show that for these five decompositions, the partitioned probe problem is in P, and the homogeneous set, 1-join, 1-join in the complement, and full star cutset in the complement unpartitioned probe problems can be solved in polynomial time as well.



Similar content being viewed by others
References
Berge, C.: Färbung von Graphen, deren sämtliche bzw. deren ungerade Kreise starr sind. Wiss. Z. Martin-Luther-Univ. Halle-Wittenberg Math.-Natur. Reihe 10(114), 114 (1961)
Berry, A., Golumbic, M.C., Lipshteyn, M.: Recognizing chordal probe graphs and cycle-bicolorable graphs. SIAM J. Discrete Math. 21(3), 573–591 (2007)
Brandstädt, A., Dragan, F.F., Szymczak, T.: On stable cutsets in graphs. Discrete Appl. Math. 105(1), 39–50 (2000)
Cerioli, M.R., Everett, H., de Figueiredo, C.M.H., Klein, S.: The homogeneous set sandwich problem. Inf. Process. Lett. 67(1), 31–35 (1998)
Chudnovsky, M.: Berge trigraphs and their applications. PhD thesis, Princeton University (2003)
Chudnovsky, M., Cornuéjols, G., Liu, X., Seymour, P., Vušković, K.: Recognizing Berge graphs. Combinatorica 25(2), 143–186 (2005)
Chudnovsky, M.: Berge trigraphs. J. Graph Theory 53(1), 1–55 (2006)
Chudnovsky, M., Robertson, N., Seymour, P., Thomas, R.: The strong perfect graph theorem. Ann. Math. 164(1), 51–229 (2006)
Chudnovsky, M., Kapadia, R.: Detecting a theta or a prism. SIAM J. Discrete Math. 22(3), 1164–1186 (2008)
Chudnovsky, M., Seymour, P.: The three-in-a-tree problem. Combinatorica 30(4), 387–417 (2010)
Chvátal, V.: Recognizing decomposable graphs. J. Graph Theory 8(1), 51–53 (1984)
Chvátal, V.: Star-cutsets and perfect graphs. J. Comb. Theory Ser. B 39(3), 189–199 (1985)
Conforti, M., Cornuéjols, G., Kapoor, A., Vušković, K.: Even-hole-free graphs part II: recognition algorithm. J. Graph Theory 40(4), 238–266 (2002)
Couto. F, Faria, L., Gravier, S., Klein, S.: On the forbidden induced subgraph probe and sandwich problems. Discrete Appl. Math. 234, 56–66 (2016)
Cunningham, W.H.: Decomposition of directed graphs. SIAM J. Algebr. Discrete Methods 3(2), 214–228 (1982)
Dantas, S., de Figueiredo, C.M.H., da Silva, M.V.G., Teixeira, R.B.: On the forbidden induced subgraph sandwich problem. Discrete Appl. Math. 159(16), 1717–1725 (2011)
de Figueiredo, C.M.H., Klein, S., Kohayakawa, Y., Reed, B.A.: Finding skew partitions efficiently. J. Algorithms 2(37), 505–521 (2000)
de Figueiredo, C.M.H., Klein, S., Vušković, K.: The graph sandwich problem for 1-join composition is NP-complete. Discrete Appl. Math. 121(1), 73–82 (2002)
Dirac, G.A.: On rigid circuit graphs. In: Abhandlungen aus dem Mathematischen Seminar der Universität Hamburg, vol. 25, no. 1, pp. 71–76. Springer, Berlin (1961)
Edwards, K.: The complexity of colouring problems on dense graphs. Theor. Comput. Sci. 43, 337–343 (1986)
Everett, H., Klein, S., Reed, B.: An algorithm for finding homogeneous pairs. Discrete Appl. Math. 72(3), 209–218 (1997)
Feder, T., Hell, P., Klein, S., Motwani, R.: List partitions. SIAM J. Discrete Math. 16(3), 449–478 (2003)
Golumbic, M.C., Shamir, R.: Complexity and algorithms for reasoning about time: a graph-theoretic approach. J. ACM: JACM 40(5), 1108–1133 (1993)
Golumbic, M.C., Kaplan, H.: Graph sandwich problems. J. Algorithms 19(3), 449–473 (1995)
Golumbic, M.C., Lipshteyn, M.: Chordal probe graphs. Discrete Appl. Math. 143(1), 221–237 (2004)
Kennedy, W.S., Reed, B.: Fast skew partition recognition. In: Ito, H., Kano, M., Katoh, N., Uno, Y. (eds.) Computational Geometry and Graph Theory, pp. 101–107. Springer, Berlin (2008)
Maffray, F., Trotignon, N.: Algorithms for perfectly contractile graphs. SIAM J. Discrete Math. 19(3), 553–574 (2005)
McMorris, F.R., Wang, C., Zhang, P.: On probe interval graphs. Discrete Appl. Math. 88(1), 315–324 (1998)
Moshi, A.M.: Matching cutsets in graphs. J. Graph Theory 13(5), 527–536 (1989)
Ramsey, F. P.: On a problem of formal logic. In: Proceedings of the London Mathematical Society, 2nd Series, vol. 30, pp. 264–344 (1930)
Spinrad, J.: \(P_4\)-trees and substitution decomposition. Discrete Appl. Math. 39(3), 263–291 (1992)
Teixeira, R.B., de Figueiredo, C.M.H.: The sandwich problem for cutsets: clique cutset, \(k\)-star cutset. Discrete Appl. Math. 154(13), 1791–1798 (2006)
Teixeira, R.B., Dantas, S.: Skew partition sandwich problem is NP-complete. Electron. Notes Discrete Math. 35, 9–14 (2009)
Truemper, K.: Alpha-balanced graphs and matrices and \(GF(3)\)-representability of matroids. J. Comb. Theory Ser. B 32(2), 112–139 (1982)
Whitesides, S.H.: An algorithm for finding clique cut-sets. Inf. Process. Lett. 12(1), 31–32 (1981)
Zhang, P., Schon, E.A., Fischer, S.G., Cayanis, E., Weiss, J., Kistler, S., Bourne, P.E.: An algorithm based on graph theory for the assembly of contigs in physical mapping of DNA. Comput. Appl. Biosci.: CABIOS 10(3), 309–317 (1994)
Acknowledgements
We are thankful to Paul Seymour for many helpful discussions. This material is based upon work supported in part by the U. S. Army Research Laboratory and the U. S. Army Research Office under Grant No. W911NF-16-1-0404.
Author information
Authors and Affiliations
Corresponding author
Additional information
Maria Chudnovsky was supported by National Science Foundation Grant DMS-1550991 and US Army Research Office Grant W911NF-16-1-0404. Celina M. H. de Figueiredo was supported by Conselho Nacional de Desenvolvimento Científico e Tecnológico CNPq Grant 303622/2011-3.
Rights and permissions
About this article
Cite this article
Chudnovsky, M., de Figueiredo, C.M.H. & Spirkl, S. The Sandwich Problem for Decompositions and Almost Monotone Properties. Algorithmica 80, 3618–3645 (2018). https://doi.org/10.1007/s00453-018-0409-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-018-0409-6