Skip to main content
Log in

A Tree Traversal Algorithm for Decision Problems in Knot Theory and 3-Manifold Topology

  • Published:
Algorithmica Aims and scope Submit manuscript

Abstract

In low-dimensional topology, many important decision algorithms are based on normal surface enumeration, which is a form of vertex enumeration over a high-dimensional and highly degenerate polytope. Because this enumeration is subject to extra combinatorial constraints, the only practical algorithms to date have been variants of the classical double description method. In this paper we present the first practical normal surface enumeration algorithm that breaks out of the double description paradigm. This new algorithm is based on a tree traversal with feasibility and domination tests, and it enjoys a number of advantages over the double description method: incremental output, significantly lower time and space complexity, and a natural suitability for parallelisation. Experimental comparisons of running times are included.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Notes

  1. For some topological algorithms, vertex enumeration is not enough: instead we must enumerate a Hilbert basis for a polyhedral cone.

  2. Efficient algorithms do exist for certain classes of polytopes. For example, in the case of non-degenerate polytopes, the reverse search algorithm of Avis and Fukuda has virtually no space requirements beyond storing the input, and has a running time polynomial in the combined input and output size [3].

  3. Recall that for the domination test we replace every unknown symbol − with 0.

  4. The dual simplex method usually has an extra requirement that this initial basis be dual feasible. For our application there is no objective function to optimise, and so this extra requirement can be ignored.

  5. When we begin the tree traversal algorithm the matrix \(\widetilde{M}\) has precisely 3n columns, but recall from Sect. 3.4 that we might delete columns from \(\widetilde{M}\) as we move through the type tree.

  6. Of course we must be careful: for instance, row operations of the form xλ x+μ y must be performed using 64-bit arithmetic, even though the inputs and outputs are guaranteed to fit into 32-bit integers.

  7. Both of these previously-known bounds were derived in standard coordinates (ℝ7n), not quadrilateral coordinates (ℝ3n). However, it is simple to convert between coordinate systems [9], and it can be shown that the upper bounds differ by a factor of at most 4n.

  8. Early indications of this appear in [10] (which works in the larger space ℝ7n), and a detailed study will appear in [11]. To illustrate how extreme these results are in ℝ3n: across all 139 103 032 closed 3-manifold triangulations of size n=9, the maximum output size is just 37, and the mean output size is a mere 9.7.

  9. These are standard linear regressions of the form logy=αn+β, where y is the quantity being measured on the vertical axis.

  10. Specifically, the vertical axis measures the double description running time divided by the tree traversal running time.

References

  1. Avis, D.: A revised implementation of the reverse search vertex enumeration algorithm. In: Polytopes—Combinatorics and Computation, Oberwolfach, 1997. DMV Sem., vol. 29, pp. 177–198. Birkhäuser, Basel (2000)

    Google Scholar 

  2. Avis, D., Bremner, D., Seidel, R.: How good are convex hull algorithms? Comput. Geom. 7(5–6), 265–301 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Avis, D., Fukuda, K.: A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete Comput. Geom. 8(3), 295–313 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  4. Balinski, M.L.: An algorithm for finding all vertices of convex polyhedral sets. SIAM J. Appl. Math. 9(1), 72–88 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bazaraa, M.S., Jarvis, J.J., Sherali, H.D.: Linear Programming and Network Flows, 4th edn. Wiley, Hoboken (2010)

    MATH  Google Scholar 

  6. Birman, J.S.: Problem list: Nonsufficiently large 3-manifolds. Not. Am. Math. Soc. 27(4), 349 (1980)

    Google Scholar 

  7. Bland, R.G.: New finite pivoting rules for the simplex method. Math. Oper. Res. 2(2), 103–107 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burton, B.A.: Introducing Regina, the 3-manifold topology software. Exp. Math. 13(3), 267–272 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  9. Burton, B.A.: Converting between quadrilateral and standard solution sets in normal surface theory. Algebr. Geom. Topol. 9(4), 2121–2174 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  10. Burton, B.A.: The complexity of the normal surface solution space. In: SCG ’10: Proceedings of the Twenty-Sixth Annual Symposium on Computational Geometry, pp. 201–209. ACM, New York (2010)

    Google Scholar 

  11. Burton, B.A.: Extreme cases in normal surface enumeration (2010, in preparation)

  12. Burton, B.A.: Optimizing the double description method for normal surface enumeration. Math. Comput. 79(269), 453–484 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Burton, B.A.: Maximal admissible faces and asymptotic bounds for the normal surface solution space. J. Comb. Theory, Ser. A 118(4), 1410–1435 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  14. Burton, B.A., Rubinstein, J.H., Tillmann, S.: The Weber-Seifert dodecahedral space is non-Haken. Trans. Am. Math. Soc. 364(2), 911–932 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Coulson, D., Goodman, O.A., Hodgson, C.D., Neumann, W.D.: Computing arithmetic invariants of 3-manifolds. Exp. Math. 9(1), 127–152 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Culler, M., Dunfield, N.: FXrays: Extremal ray enumeration software. http://www.math.uic.edu/~t3m/ (2002–2003)

  17. de Ghellinck, G., Vial, J.-P.: A polynomial Newton method for linear programming. Algorithmica 1(4), 425–453 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  18. Dyer, M.E.: The complexity of vertex enumeration methods. Math. Oper. Res. 8(3), 381–402 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fukuda, K., Liebling, T.M., François, M.: Analysis of backtrack algorithms for listing all vertices and all faces of a convex polyhedron. Comput. Geom. 8(1), 1–12 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fukuda, K., Prodon, A.: Double description method revisited. In: Combinatorics and Computer Science, Brest, 1995. Lecture Notes in Comput. Sci., vol. 1120, pp. 91–111. Springer, Berlin (1996)

    Chapter  Google Scholar 

  21. Granlund, T., et al.: The GNU multiple precision arithmetic library. http://gmplib.org/ (1991–2010)

  22. Haken, W.: Theorie der Normalflächen. Acta Math. 105, 245–375 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  23. Haken, W.: Über das Homöomorphieproblem der 3-Mannigfaltigkeiten. I. Math. Z. 80, 89–120 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hass, J., Lagarias, J.C., Pippenger, N.: The computational complexity of knot and link problems. J. Assoc. Comput. Mach. 46(2), 185–211 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Jaco, W.: The homeomorphism problem: Classification of 3-manifolds. Lecture notes. http://www.math.okstate.edu/~jaco/pekinglectures.htm (2005)

  26. Jaco, W., Letscher, D., Rubinstein, J.H.: Algorithms for essential surfaces in 3-manifolds. In: Topology and Geometry: Commemorating SISTAG. Contemporary Mathematics, vol. 314, pp. 107–124. Am. Math. Soc., Providence (2002)

    Chapter  Google Scholar 

  27. Jaco, W., Oertel, U.: An algorithm to decide if a 3-manifold is a Haken manifold. Topology 23(2), 195–209 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  28. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Combinatorica 4(4), 373–395 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kleiner, B., Lott, J.: Notes on Perelman’s papers. Geom. Topol. 12(5), 2587–2855 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kneser, H.: Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten. Jahresber. Dtsch. Math.-Ver. 38, 248–260 (1929)

    MATH  Google Scholar 

  31. Matveev, S.: Algorithmic topology and classification of 3-manifolds. Algorithms and Computation in Mathematics, vol. 9. Springer, Berlin (2003)

    MATH  Google Scholar 

  32. McMullen, P.: The maximum numbers of faces of a convex polytope. Mathematika 17, 179–184 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  33. Megiddo, N.: Improved asymptotic analysis of the average number of steps performed by the self-dual simplex algorithm. Math. Program. 35(2), 140–172 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  34. Motzkin, T.S., Raiffa, H., Thompson, G.L., Thrall, R.M.: The double description method. In: Kuhn, H.W., Tucker, A.W. (eds.) Contributions to the Theory of Games, Vol. II. Annals of Mathematics Studies, vol. 28, pp. 51–73. Princeton University Press, Princeton (1953)

    Google Scholar 

  35. Rubinstein, J.H.: An algorithm to recognize the 3-sphere. In: Proceedings of the International Congress of Mathematicians, Zürich, 1994, vol. 1, pp. 601–611. Birkhäuser, Basel (1995)

    Google Scholar 

  36. Smale, S.: On the average number of steps of the simplex method of linear programming. Math. Program. 27(3), 241–262 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  37. Terzer, M., Stelling, J.: Parallel extreme ray and pathway computation. In: Parallel Processing and Applied Mathematics. Lecture Notes in Comput. Sci., vol. 6068, pp. 300–309. Springer, Berlin (2010)

    Chapter  Google Scholar 

  38. Tillmann, S.: Normal surfaces in topologically finite 3-manifolds. Enseign. Math. (2) 54, 329–380 (2008)

    MathSciNet  MATH  Google Scholar 

  39. Tollefson, J.L.: Normal surface Q-theory. Pac. J. Math. 183(2), 359–374 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  40. Ziegler, G.M.: Lectures on Polytopes. Graduate Texts in Mathematics, vol. 152. Springer, New York (1995)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

The authors are grateful to RMIT University for the use of their high-performance computing facilities. The first author is supported by the Australian Research Council under the Discovery Projects funding scheme (project DP1094516).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin A. Burton.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burton, B.A., Ozlen, M. A Tree Traversal Algorithm for Decision Problems in Knot Theory and 3-Manifold Topology. Algorithmica 65, 772–801 (2013). https://doi.org/10.1007/s00453-012-9645-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00453-012-9645-3

Keywords

Mathematics Subject Classification