Abstract
Given a matrix A∈ℝm×n (n vectors in m dimensions), and a positive integer k<n, we consider the problem of selecting k column vectors from A such that the volume of the parallelepiped they define is maximum over all possible choices. We prove that there exists δ<1 and c>0 such that this problem is not approximable within 2−ck for k=δn, unless P=NP.
Similar content being viewed by others
References
Arora, S., Lund, C., Motwani, R., Sudan, M., Szegedy, M.: Proof verification and the hardness of approximation problems. J. ACM 45(3), 501–555 (1998)
Arora, S., Safra, S.: Probabilistic checking of proofs: a new characterization of NP. J. ACM 45(1), 70–122 (1998)
Boutsidis, C., Drineas, P., Magdon-Ismail, M.: Near-optimal column based matrix reconstruction. (2011). arXiv:1103.0995v1
Boutsidis, C., Mahoney, M.W., Drineas, P.: An improved approximation algorithm for the column subset selection problem. In: SODA’09: Proceedings of the 19th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 968–977 (2009)
Chan, T.F.: Rank revealing QR factorizations. Linear Algebra Appl. 88/89, 67–82 (1987)
Chan, T.F., Hansen, P.: Low-rank revealing QR factorizations. Numer. Linear Algebra Appl. 1, 33–44 (1994)
Chandrasekaran, S., Ipsen, I.C.F.: On rank-revealing factorizations. SIAM J. Matrix Anal. Appl. 15, 592–622 (1994)
Çivril, A., Magdon-Ismail, M.: On selecting a maximum volume sub-matrix of a matrix and related problems. Theor. Comput. Sci. 410(47–49), 4801–4811 (2009)
de Hoog, F.R., Mattheijb, R.M.M.: Subset selection for matrices. Linear Algebra Appl. 422, 349–359 (2007)
Deshpande, A., Rademacher, L.: Efficient volume sampling for row/column subset selection. In: FOCS’10: Proceedings of 51st Annual Symposium on Foundations of Computer Science, pp. 329–338 (2010)
Deshpande, A., Rademacher, L., Vempala, S., Wang, G.: Matrix approximation and projective clustering via volume sampling. Theory Comput. 2(1), 225–247 (2006)
Deshpande, A., Vempala, S.: Adaptive sampling and fast low-rank matrix approximation. In: RANDOM’06: 10th International Workshop on Randomization and Computation, pp. 292–303 (2006)
Feige, U.: A threshold of lnn for approximating set cover. J. ACM 45(4), 634–652 (1998)
Golub, G.H., Klema, V., Stewart, G.W.: Rank degeneracy and least squares problems. Technical report, Dept. of Computer Science, Univ. of Maryland, 1976
Golub, G.H., Loan, C.V.: Matrix Computations. Johns Hopkins University Press, Baltimore (1996)
Goreinov, S.A., Tyrtyshnikov, E.E.: The maximal-volume concept in approximation by low-rank matrices. In: Contemporary Mathematics, vol. 280, pp. 47–51. AMS, Providence (2001)
Goreinov, S.A., Zamarashkin, N.L., Tyrtyshnikov, E.E.: Pseudo-skeleton approximations by matrices of maximal volume. Mat. Zametki 62, 619–623 (1997)
Gritzmann, P., Klee, V., Larman, D.G.: Largest j-simplices n-polytopes. Discrete Comput. Geom. 13, 477–515 (1995)
Gu, M., Eisenstat, S.C.: Efficient algorithms for computing a strong rank-revealing QR factorization. SIAM J. Sci. Comput. 17(4), 848–869 (1996)
Hazan, E., Safra, S., Schwartz, O.: On the complexity of approximating k-set packing. Comput. Complex. 15, 20–39 (2006)
Hong, Y.P., Pan, C.T.: Rank-revealing QR factorizations and the singular value decomposition. Math. Comput. 58, 213–232 (1992)
Koutis, I.: Parameterized complexity and improved inapproximability for computing the largest j-simplex in a V-polytope. Inf. Process. Lett. 100, 8–13 (2006)
Packer, A.: Polynomial-time approximation of largest simplices in V-polytopes. Discrete Appl. Math. 134, 213–237 (2004)
Pan, C.T.: On the existence and computation of rank-revealing LU factorizations. Linear Algebra Appl. 316(1–3), 199–222 (2000)
Pan, C.T., Tang, P.T.P.: Bounds on singular values revealed by QR factorizations. BIT Numer. Math. 39, 740–756 (1999)
Raz, R.: A parallel repetition theorem. SIAM J. Comput. 27(3), 763–803 (1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Çivril, A., Magdon-Ismail, M. Exponential Inapproximability of Selecting a Maximum Volume Sub-matrix. Algorithmica 65, 159–176 (2013). https://doi.org/10.1007/s00453-011-9582-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00453-011-9582-6