Skip to main content
Log in

The Maximum 4-Vertex-Path Packing of a Cubic Graph Covers At Least Two-Thirds of Its Vertices

  • Original Paper
  • Published:
Graphs and Combinatorics Aims and scope Submit manuscript

Abstract

Let \(P_4\) denote the path on four vertices. A \(P_4\)-packing of a graph G is a collection of vertex-disjoint copies of \(P_4\) in G. The maximum \(P_4\)-packing problem is to find a \(P_4\)-packing of maximum cardinality in a graph. In this paper, we prove that every simple cubic graph G on v(G) vertices has a \(P_4\)-packing covering at least \(\frac{2v(G)}{3}\) vertices of G and that this lower bound is sharp. Our proof provides a quadratic-time algorithm for finding such a \(P_4\)-packing of a simple cubic graph.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28

Similar content being viewed by others

References

  1. Akiyama, J., Kano, M.: Path Factors of a Graph. Graphs and Applications. Wiley, New York (1984)

    Google Scholar 

  2. Akiyama, J., Kano, M.: Factors and factorizations of graphs—a survey. J. Graph Theory 9(1), 1–42 (1985)

    Article  MathSciNet  Google Scholar 

  3. Barbero, F., Jones, G., Sheng, M., Yeo, A.: Linear-vertex kernel for the problem of packing \(r\)-stars into a graph without long induced paths. Inf. Process. Lett. 116(6), 433–436 (2016)

    Article  MathSciNet  Google Scholar 

  4. Eto, H., Guo, F., Miyano, E.: Distance-\(d\) independent set problems for bipartite and chordal graphs. J. Combin. Optim. 27(1), 88–99 (2014)

    Article  MathSciNet  Google Scholar 

  5. Eto, H., Ito, T., Liu, Z., Miyano, E.: Approximation algorithm for the distance-\(3\) independent set problem on cubic graphs, WALCOM: Algorithms and Computation: 11th International Conference and Workshops, WALCOM: Hsinchu, Taiwan. Proceedings 2017, 228–240 (2017)

  6. Guruswami, V., Rangan, C.P., Chang, M.S., Chang, G.J., Wong, C.K.: The \(K_r\)-packing problem. Computing 66(1), 79–89 (2001)

    Article  MathSciNet  Google Scholar 

  7. Hell, P., Kirkpatrick, D.G.: Packing by cliques and by finite families of graphs. Discrete Math. 49(1), 45–59 (1984)

    Article  MathSciNet  Google Scholar 

  8. Hell, P., Kirkpatrick, D.G.: Packing by complete bipartite graphs. SIAM J. Algorithm Discrete Math. 7(2), 199–209 (1986)

    Article  MathSciNet  Google Scholar 

  9. Hell, P., Kirkpatrick, D.G., Kratochvíl, J., Kr̆íz̆, I.: On restricted two-factors. SIAM J. Discrete Math. 1(4):471–484 (1998)

  10. Hurkens, C., Schrijver, A.: On the size of systems of sets every \(t\) of which have an SDR, with an application to the worst-case ratio of heuristics for packing problems. SIAM J. Discrete Math. 2(1), 68–72 (1989)

    Article  MathSciNet  Google Scholar 

  11. Kaneko, A., Kelmans, A., Nishimura, T.: On packing \(3\)-vertex paths in a graph. J. Graph Theory 36(4), 175–197 (2001)

    Article  MathSciNet  Google Scholar 

  12. Kaneko, A.: A necessary and sufficient condition for the existence of a path factor every component of which is a path of length at least two. J. Combin. Theory Ser. B 88(2), 195–218 (2003)

    Article  MathSciNet  Google Scholar 

  13. Kawarabayashi, K., Matsuda, H., Oda, Y., Ota, K.: Path factors in cubic graphs. J. Graph Theory 39(3), 188–193 (2002)

    Article  MathSciNet  Google Scholar 

  14. Kelmans, A.: Packing \(P_k\) in a cubic graph is NP-hard for \(k\ge 3\), manuscript (2001)

  15. Kelamns, A., Mubayi, D.: How many disjoint \(2\)-edge paths must a cubic graph have? J. Graph Theory 45(1), 57–79 (2003)

    Article  MathSciNet  Google Scholar 

  16. Kelmans, A.: Packing \(3\)-vertex paths in claw-free graphs and related topics. Discrete Appl. Math. 159(2–3), 112–127 (2011)

    Article  MathSciNet  Google Scholar 

  17. Kirkpatrick, D.G., Hell, P.: On the complexity of general graph factor problems. SIAM J. Comput. 12(3), 601–609 (1983)

    Article  MathSciNet  Google Scholar 

  18. Kosowski, A., Malafiejski, M., Żyliński, P.: Parallel processing subsystems with redundancy in a distributed environment. Int. Conf. Parallel Process. Appl. Math. 3911, 1002–1009 (2005)

    Article  Google Scholar 

  19. Kosowski, A., Żyliński, P.: Packing three-vertex paths in \(2\)-connected cubic graphs. Ars Combin. 89, 1–19 (2008)

    MathSciNet  Google Scholar 

  20. Kosowski, A., Malafiejski, M., Żyliński, P.: Tighter bounds on the size of a maximum \(P_3\)-matching in a cubic graph. Graphs Combin. 24(5), 461–468 (2008)

    Article  MathSciNet  Google Scholar 

  21. Monnot, J., Toulouse, S.: The path partition problem and related problems in bipartite graphs. Oper. Res. Lett. 35, 677–684 (2007)

    Article  MathSciNet  Google Scholar 

  22. Mutairi, A.A., Ali, B., Manuel, P.: Packing in carbon nanotubes. J. Combin. Math. Combin. Comput. 92, 195–206 (2015)

    MathSciNet  Google Scholar 

  23. Takamizawa, K., Nishizeki, T., Saito, N.: Linear-time computability of combinatorial problems on series-parallel graphs. J. Assoc. Comput. Mach. 29(3), 623–641 (1982)

    Article  MathSciNet  Google Scholar 

  24. Wang, H.: Path factors of bipartite graphs. J. Graph Theory 18(2), 161–167 (1994)

    Article  MathSciNet  Google Scholar 

  25. Xi, W., Lin, W.: On maximum \(P_3\)-packing in claw-free subcubic graphs. J. Combin. Optim. 41(3), 694–709 (2021)

    Article  MathSciNet  Google Scholar 

  26. Xi, W., Lin, W.: The maximum \(3\)-star packing problem in claw-free cubic graphs (2022)

  27. Zhou, S., Wu, J., Xu, Y.: Toughness, isolated toughness and path factors in graphs. Bull. Aust. Math. Soc. 106(2), 195–202 (2022)

    Article  MathSciNet  Google Scholar 

  28. Zhou, S., Sun, Z.: Some existence theorems on path factors with given properties in graphs. Acta Math. Sin. Engl. Ser. 36(8), 917–928 (2020)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We would like to give our thanks to anonymous reviewers for careful reading of this paper and many valuable suggestions.

Funding

This work was supported by NSFC under grant 11771080.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wensong Lin.

Ethics declarations

Conflict of interest

The authors declares that there is no conflict of interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supported by NSFC 11771080.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, W., Lin, W. The Maximum 4-Vertex-Path Packing of a Cubic Graph Covers At Least Two-Thirds of Its Vertices. Graphs and Combinatorics 40, 5 (2024). https://doi.org/10.1007/s00373-023-02732-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00373-023-02732-x

Keywords