Abstract
Congenital hand deformities (CHD) have attracted increasing research attention in the past few decades. The impacts of CHD on the brain structure, however, are not fully studied to date. In this work, we propose a novel framework to study brain morphometry in CHD patients using Wasserstein distance based on optimal mass transport (OMT) theory. We first employ conformal mapping to map the left and right surface-based functional brain areas to planar rectangles, which pushes the area element on the brain surface to the planar rectangle and incurs the area distortion. A measure is then determined by this area distortion. We further propose a new rectangle domain-based OMT map algorithm. Given two measures on two surfaces, we employ the proposed algorithm to compute a unique OMT map between the two measures encoding the geometric information of left and right surface-based functional brain areas. The transportation cost of this OMT map gives the Wasserstein distance between two surfaces, which intrinsically measures the dissimilarities between two surface-based shapes. Our method is theoretically rigorous and computationally efficient and stable. We finally evaluate the proposed Wasserstein distance-based method on the left and right post-central gyri from the CHD patients and healthy control subjects for analyzing brain cortical morphometry. Experimental results demonstrate the efficiency and efficacy of our method, and shed insightful lights on the study of the brain morphometry for those subjects with CHD.










Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Data and statistics. http://www.cdc.gov/ncbddd/birthdefects/data.html (2016)
Iacono, N.L., Mantero, S., Chiarelli, A., Garcia, E., Mills, A.A., Morasso, M.I., Costanzo, A., Levi, G., Guerrini, L., Merlo, G.R.: Regulation of Dlx5 and Dlx6 gene expression by p63 is involved in EEC and SHFM congenital limb defects. Development 135(7), 1377–1388 (2008)
Goldfarb, C.A.: Congenital hand differences. J. Hand Surg. 34(7), 1351–1356 (2009)
Manske, P.R., Goldfarb, C.A.: Congenital failure of formation of the upper limb. Hand Clin. 25(2), 157–170 (2009)
Oberg, K.C., Feenstra, J.M., Manske, P.R., Tonkin, M.A.: Developmental biology and classification of congenital anomalies of the hand and upper extremity. J. Hand Surg. 35(12), 2066–2076 (2010)
Andersson, G.-B., Gillberg, C., Fernell, E., Johansson, M., Nachemson, A.: Children with surgically corrected hand deformities and upper limb deficiencies: self-concept and psychological well-being. J. Hand Surg. (Eur. Vol.) 36(9), 795–801 (2011)
Gold, N.B., Westgate, M.-N., Holmes, L.B.: Anatomic and etiological classification of congenital limb deficiencies. Am. J. Med. Genet. Part A 155(6), 1225–1235 (2011)
Corsello, G., Giuffrè, M.: Congenital malformations. J. Matern Fet Neonatal Med 25(sup1), 25–29 (2012)
Tonkin, M.A., Tolerton, S.K., Quick, T.J., Harvey, I., Lawson, R.D., Smith, N.C., Oberg, K.C.: Classification of congenital anomalies of the hand and upper limb: development and assessment of a new system. J. Hand Surg. 38(9), 1845–1853 (2013)
Pizer, S.M., Fritsch, D.S., Yushkevich, P.A., Johnson, V.E., Chaney, E.L.: Segmentation, registration, and measurement of shape variation via image object shape. IEEE Tran. Med. Imaging 18(10), 851–865 (1999)
Chung, M.K., Dalton, K.M., Davidson, R.J.: Tensor-based cortical surface morphometry via weighted spherical harmonic representation. IEEE Trans. Med. Imaging 27(8), 1143–1151 (2008)
Im, K., Lee, J.-M., Lyttelton, O., Kim, S.H., Evans, A.C., Kim, S.I.: Brain size and cortical structure in the adult human brain. Cereb. Cortex 18(9), 2181–2191 (2008)
Wang, Y., Gu, X., Chan, T.F., Thompson, P.M..: Shape analysis with conformal invariants for multiply connected domains and its application to analyzing brain morphology. In: IEEE Conference on Computer Vision and Pattern Recognition, 2009. CVPR 2009, pp. 202–209. IEEE (2009)
Ashburner, J., Hutton, C., Frackowiak, R., Johnsrude, I., Price, C., Friston, K., et al.: Identifying global anatomical differences: deformation-based morphometry. Hum. Brain Mapp. 6(5–6), 348–357 (1998)
Davies, R.H., Twining, C.J., Allen, P.D., Cootes, T.F., Taylor, C.J.: Shape discrimination in the hippocampus using an MDL model. In: Thalmann, D., Musse, S.R. (eds.) Information Processing in Medical Imaging, pp. 38–50. Springer, Berlin (2003)
Specht, M., Lebrun, R., Zollikofer, C.P.E.: Visualizing shape transformation between chimpanzee and human braincases. Vis. Comput. 23(9), 743–751 (2007)
Liu, X., Shi, Y., Dinov, I., Mio, W.: A computational model of multidimensional shape. Int. J. Comput. Vis. 89(1), 69–83 (2010)
Zeng, W., Shi, R., Wang, Y., Yau, S.-T., Xianfeng, G., Alzheimers Disease Neuroimaging Initiative: Teichmüller shape descriptor and its application to alzheimers disease study. Int. J. Comput. Vis. 105(2), 155–170 (2013)
Wade, B.S.C., Valcour, V.G., Wendelken-Riegelhaupt, L., Esmaeili-Firidouni, P., Joshi, S.H., Gutman, B.A., Thompson, P.M.: Mapping abnormal subcortical brain morphometry in an elderly HIV+ cohort. NeuroImage Clin. 9, 564–573 (2015)
Tremblay, P., Deschamps, I.: Structural brain aging and speech production: a surface-based brain morphometry study. Brain Struct. Funct. 221(6), 3275–3299 (2016)
Landin-Romero, R., Canales-Rodríguez, E.J., Kumfor, F., Moreno-Alcázar, A., Madre, M., Maristany, T., Pomarol-Clotet, E., Amann, B.L.: Surface-based brain morphometry and diffusion tensor imaging in schizoaffective disorder. Aust. N. Z. J. Psychiatry 51(1), 42–54 (2017)
Zhu, L., Haker, S., Tannenbaum, A.: Area-Preserving Mappings for the Visualization of Medical Structures. Springer, Berlin (2003)
Haker, S., Zhu, L., Tannenbaum, A., Angenent, S.: Optimal mass transport for registration and warping. Int. J. Comput. Vis. 60(3), 225–240 (2004)
Dominitz, A., Tannenbaum, A.: Texture mapping via optimal mass transport. IEEE Trans. Vis. Comput. Graph. 16(3), 419–433 (2010)
Rehman, T., Haber, E., Pryor, G., Melonakos, J., Tannenbaum, A.: 3D nonrigid registration via optimal mass transport on the GPU. Med. Image Anal. 13(6), 931–940 (2009)
Su, Z., Zeng, W., Shi, R., Wang, Y., Sun, J., Gu, X.: Area preserving brain mapping. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2235–2242 (2013)
Zhao, X., Su, Z., Gu, X.D., Kaufman, A., Sun, J., Gao, J., Luo, F.: Area-preservation mapping using optimal mass transport. IEEE Trans. Vis. Comput. Graph. 19(12), 2838–2847 (2013)
Mérigot, Q.: A multiscale approach to optimal transport. Comput. Graph. Forum 30, 1583–1592 (2011)
De Goes, F., Cohen-Steiner, D., Alliez, P., Desbrun, M.: An optimal transport approach to robust reconstruction and simplification of 2D shapes. Computer Graph. Forum 30, 1593–1602 (2011)
de Goes, F., Breeden, K., Ostromoukhov, V., Desbrun, M.: Blue noise through optimal transport. ACM Trans. Graph. 31(6), 171 (2012)
Gu, X., Yau, S.-T.: Computational Conformal Geometry. International Press, Vienna (2008)
Kantorovich, L.V.: On a problem of Monge. Uspekhi Mat. Nauk. 3, 225–226 (1948)
Gu, X., Luo, F., Sun, J., Yau, S.-T.: Variational principles for Minkowski type problems, discrete optimal transport, and discrete Monge-Amperé equations. arXiv:1302.5472 (2013)
Meyer, M., Desbrun, M., Schröder, P., Barr, A.H.: Discrete differential-geometry operators for triangulated 2-manifolds. In: Meals, R.A. (ed.) Visualization and Mathematics III, pp. 35–57. Springer, Berlin (2003)
Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface Ricci flow. IEEE Trans. Vis. Comput. Graph. 14(5), 1030–1043 (2008)
Ben-Chen, M., Gotsman, C., Bunin, G.: Conformal flattening by curvature prescription and metric scaling. Comput. Graph. Forum 27, 449–458 (2008)
Taimouri, V., Hua, J.: Deformation similarity measurement in quasi-conformal shape space. Graph. Models 76(2), 57–69 (2014)
Cohen-Steiner, D., Morvan, J.-M.: Restricted delaunay triangulations and normal cycle. In: Proceedings of the Nineteenth Annual Symposium on Computational Geometry, pp. 312–321. ACM (2003)
Nicolas B.: From Knothe’s rearrangement to Brenier’s optimal transport map. arXiv:1205.1099, pp. 1–29 (2012)
Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions. Commun. Pure Appl. Math. 44(4), 375–417 (1991)
He, Q., Karsch, K., Duan, Y.: Semi-automatic 3D segmentation of brain structures from MRI. Int. J. Data Min. Bioinform. 5(2), 158–173 (2011)
Lorensen, W.E., Cline, H.E.: Marching cubes: a high resolution 3D surface construction algorithm. In: ACM Siggraph Computer Graphics, vol. 21, pp. 163–169. ACM (1987)
Rockafellar, R.T., Wets, R.J.-B.: Variational Analysis, vol. 317. Springer, Berlin (2009)
Gardner, A., Kanno, J., Duncan, C.A., Selmic, R.: Measuring distance between unordered sets of different sizes. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 137–143 (2014)
Besl, P.J., McKay, N.D.: Method for registration of 3-D shapes. In: Manske, P.R. (ed.) Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611, pp. 586–607. International Society for Optics and Photonics, Bellingham (1992)
Acknowledgements
This paper has been partially supported by NSF DMS-1418255, AFOSR FA9550-14-1-0193.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ma, M., Wang, X., Duan, Y. et al. Optimal mass transport based brain morphometry for patients with congenital hand deformities. Vis Comput 35, 1311–1325 (2019). https://doi.org/10.1007/s00371-018-1543-5
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-018-1543-5