Abstract
In this paper, we present a novel real-time rendering algorithm for heterogenous translucent objects with deformable geometry. The proposed method starts by rendering the surface geometry in two separate geometry buffers—the irradiance buffer and the splatting buffer—with corresponding mipmaps from the lighting and viewing directions, respectively. Irradiance samples are selected from the irradiance buffer according to geometric and material properties using a novel and fast selection algorithm. Next, we gather the irradiance per visible surface point by splatting the irradiance samples to the splatting buffer. To compute the appearance of long-distance low-frequency subsurface scattering, as well as short-range detailed scattering, a fast novel multiresolution GPU algorithm is developed that computes everything on the fly and which does not require any precomputations. We illustrate the effectiveness of our method on several deformable geometries with measured heterogeneous translucent materials.












Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Carr, N.A., Hall, J.D., Hart, J.C.: Gpu algorithms for radiosity and subsurface scattering. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on Graphics Hardware, HWWS’03, pp. 51–59 (2003)
Chang, C.-W., Lin, W.-C., Ho, T.-C., Huang, T.-S., Chuang, J.-H.: Real-time translucent rendering using gpu-based texture space importance sampling. Comput. Graph. Forum 27(2), 517–526 (2008)
Dachsbacher, C., Stamminger, M.: Translucent shadow maps. In: Proceedings of the 14th Eurographics workshop on Rendering, EGRW’03, pp. 197–201. Eurographics Association, Goslar (2003)
Dachsbacher, C., Stamminger, M.: Reflective shadow maps. In: Proceedings of the 2005 Symposium on Interactive 3D Graphics and Games, I3D’05, New York, NY, USA, pp. 203–231. ACM Press, New York (2005)
Dachsbacher, C., Stamminger, M.: Splatting indirect illumination. In: Proceedings of the 2006 Symposium on Interactive 3D Graphics and Games, I3D’06, pp. 93–100. ACM Press, New York (2006)
d’Eon, E., Luebke, D.P., Enderton, E.: Efficient rendering of human skin. In: Rendering Techniques, pp. 147–157 (2007)
Haber, T., Mertens, T., Bekaert, P., Van Reeth, F.: A computational approach to simulate subsurface light diffusion in arbitrarily shaped objects. In: Proceedings of Graphics Interface 2005, GI’05, pp. 79–86 (2005)
Hao, X., Varshney, A.: Real-time rendering of translucent meshes. ACM Trans. Graph. 23, 120–142 (2004)
Lensch, H.P.A., Goesele, M., Bekaert, P., Kautz, J., Magnor, M.A., Lang, J., Seidel, H.-P.: Interactive rendering of translucent objects. In: Proceedings of Pacific Graphics 2002, pp. 214–224 (2002)
Mertens, T., Kautz, J., Bekaert, P., Seidelz, H.-P., Van Reeth, F.: Interactive rendering of translucent deformable objects. In: Proceedings of the 14th Eurographics Workshop on Rendering, EGRW’03, pp. 130–140. Eurographics Association, Goslar (2003)
Nichols, G., Wyman, C.: Multiresolution splatting for indirect illumination. In: Proceedings of the 2009 Symposium on Interactive 3D Graphics and Games, I3D’09, pp. 83–90. ACM Press, New York (2009)
Nichols, G., Wyman, C.: Interactive indirect illumination using adaptive multiresolution splatting. IEEE Trans. Vis. Comput. Graph. 16(5), 729–741 (2010)
Nichols, G., Shopf, J., Wyman, C.: Hierarchical image-space radiosity for interactive global illumination. Comput. Graph. Forum 28(4), 1141–1149 (2009)
Nicodemus, F.E., Richmond, J.C., Hsia, J.J., Ginsberg, I.W., Limperis, T.: Geometrical considerations and nomenclature for reflectance. In: Radiometry, pp. 94–145. Jones and Bartlett, Boston (1992)
Peers, P., vom Berge, K., Matusik, W., Ramamoorthi, R., Lawrence, J., Rusinkiewicz, S., Dutré, P.: A compact factored representation of heterogeneous subsurface scattering. In: ACM SIGGRAPH 2006 Papers, SIGGRAPH’06, pp. 746–753. ACM Press, New York (2006)
Shah, M.A., Konttinen, J., Pattanaik, S.: Image-space subsurface scattering for interactive rendering of deformable translucent objects. IEEE Comput. Graph. Appl. 29, 66–78 (2009)
Song, Y., Tong, X., Pellacini, F., Peers, P.: Subedit: a representation for editing measured heterogeneous subsurface scattering. In: ACM SIGGRAPH 2009 Papers, SIGGRAPH’09, pp. 31:1–31:10. ACM Press, New York (2009)
Stam, J.: Multiple scattering as a diffusion process. In: Eurographics Rendering Workshop, pp. 41–50 (1995)
Wang, R., Tran, J., Luebke, D.: All-frequency interactive relighting of translucent objects with single and multiple scattering. ACM Trans. Graph. 24, 1202–1207 (2005)
Wang, R., Cheslack-Postava, E., Wang, R., Luebke, D.P., Chen, Q., Hua, W., Peng, Q., Bao, H.: Real-time editing and relighting of homogeneous translucent materials. Vis. Comput. 24(7–9), 565–575 (2008)
Wang, J., Zhao, S., Tong, X., Lin, S., Lin, Z., Dong, Y., Guo, B., Shum, H.-Y.: Modeling and rendering of heterogeneous translucent materials using the diffusion equation. ACM Trans. Graph. 27(9), 1–18 (2008)
Wang, Y., Wang, J., Holzschuch, N., Subr, K., Yong, J.-H., Guo, B.: Real-time rendering of heterogeneous translucent objects with arbitrary shapes. Comput. Graph. Forum 29, 497–506 (2010)
Wann Jensen, H., Marschner, S.R., Levoy, M., Hanrahan, P.: A practical model for subsurface light transport. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH’01, pp. 511–518. ACM Press, New York (2001)
Xu, K., Gao, Y., Li, Y., Ju, T., Hu, S.-M.: Real-time homogenous translucent material editing. Comput. Graph. Forum 26(3), 545–552 (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, G., Peers, P., Zhang, J. et al. Real-time rendering of deformable heterogeneous translucent objects using multiresolution splatting. Vis Comput 28, 701–711 (2012). https://doi.org/10.1007/s00371-012-0704-1
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00371-012-0704-1