Skip to main content
Log in

Parallel Channel Estimator and Equalizer for Mobile OFDM Systems

  • Published:
Circuits, Systems, and Signal Processing Aims and scope Submit manuscript

Abstract

Mobile OFDM refers to OFDM systems with fast moving transceivers, in contrast to traditional OFDM systems whose transceivers are stationary or have a low velocity. In this paper, we use the basis expansion model (BEM) to model time-varying OFDM channels. Using different BEM’s, we investigate various architectures to implement the least-squares (LS) channel estimation and its corresponding zero-forcing (ZF) channel equalization. The experimental results show that our implementation for mobile OFDM systems is capable of combatting the time variation of mobile OFDM channels, and more hardware resource utilization is necessary compared with a traditional OFDM design which fails in a time-varying scenario. For mobile OFDM systems, different BEM’s are available for the channel modeling. We observe that the so-called Critically sampled Complex-Exponential BEM (CCE-BEM) leads to the most efficient hardware architecture while still maintaining high modeling accuracy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Algorithm 2
Fig. 6
Algorithm 3
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. J.A.C. Bingham, Multicarrier modulation for data transmission: an idea whose time has come. IEEE Commun. Mag. 28, 5–14 (1990)

    Article  MathSciNet  Google Scholar 

  2. D.K. Borah, B.D. Hart, Frequency-selective fading channel estimation with a polynomial time-varying channel model. IEEE Trans. Commun. 47, 862–873 (1999)

    Article  Google Scholar 

  3. X. Cai, G.B. Giannakis, Bounding performance and suppressing intercarrier interference in wireless mobile OFDM. IEEE Trans. Commun. 51, 2047–2056 (2003)

    Article  Google Scholar 

  4. C. Dick, F. Harris, FPGA implementation of an OFDM PHY, in Proc. Asilomar Conference on Signals, Systems, and Computers, vol. 1 (2003), pp. 905–909

    Google Scholar 

  5. M. Dong, L. Tong, B. Sadler, Optimal insertion of pilot symbols for transmissions over time-varying flat fading channels. IEEE Trans. Signal Process. 52, 1403–1418 (2004)

    Article  MathSciNet  Google Scholar 

  6. K. Fang, G. Leus, L. Rugini, Block transmissions over doubly-selective channels: iterative channel estimation and turbo equalization. EURASIP J. Adv. Signal Process. 2010, 13 (2010)

    Article  Google Scholar 

  7. K. Fang, L. Rugini, G. Leus, Low-complexity block turbo equalization for OFDM systems in time-varying channels. IEEE Trans. Signal Process. 56, 5555–5566 (2008)

    Article  MathSciNet  Google Scholar 

  8. G.B. Giannakis, C. Tepedelenlioglu, Basis expansion models and diversity techniques for blind identification and equalization of time-varying channels. Proc. IEEE 86, 1969–1986 (1998)

    Article  Google Scholar 

  9. G.H. Golub, C.F. van Loan, Matrix Computations, 3rd edn. (Johns Hopkins Press, Baltimore, 1996)

    MATH  Google Scholar 

  10. T. Hrycak, S. Das, G. Matz, H.G. Feichtinger, Low complexity equalization for doubly selective channels modeled by a basis expansion. IEEE Trans. Signal Process. 58, 5706–5719 (2010)

    Article  MathSciNet  Google Scholar 

  11. E.-J. Im, Optimizing the performance of sparse matrix-vector multiplication. Ph.D. thesis, University of California, Berkeley (2000)

  12. W.C. Jakes, Microwave Mobile Communications (Wiley, New York, 1974)

    Google Scholar 

  13. G. Leus, On the estimation of rapidly time-varying channels, in Proc. Europ. Signal Process. Conf., EUSIPCO, Vienna, Austria (2004)

    Google Scholar 

  14. X. Ma, G.B. Giannakis, Maximum-diversity transmissions over doubly selective wireless channels. IEEE Trans. Inf. Theory 49, 1832–1840 (2003)

    Article  MathSciNet  Google Scholar 

  15. X. Ma, G.B. Giannakis, S. Ohno, Optimal training for block transmissions over doubly selective wireless fading channels. IEEE Trans. Signal Process. 51, 1351–1366 (2003)

    Article  MathSciNet  Google Scholar 

  16. L. Rugini, P. Banelli, G. Leus, Simple equalization of time-varying channels for OFDM. IEEE Commun. Lett. 9, 619–621 (2005)

    Article  Google Scholar 

  17. L. Rugini, P. Banelli, G. Leus, Low-complexity banded equalizers for OFDM systems in doppler spread channels. EURASIP J. Appl. Signal Process. 2006, 248 (2006)

    Article  Google Scholar 

  18. P. Schniter, Low-complexity equalization of OFDM in doubly selective channels. IEEE Trans. Signal Process. 52, 1002–1011 (2004)

    Article  MathSciNet  Google Scholar 

  19. A. Takach, B. Bowyer, T. Bollaert, C based hardware design for wireless applications, in Proc. Design, Auto. and Test in Europe, DATE (2005), pp. 124–129

    Chapter  Google Scholar 

  20. Y. Tang, L. Qian, Y. Wang, Optimized software implementation of a full-rate IEEE 802.11a compliant digital baseband transmitter on a digital signal processor, in Proc. IEEE Global Commun. Conf., GLOBECOM, vol. 4, (2005)

    Google Scholar 

  21. Z. Tang, R.C. Cannizzaro, G. Leus, P. Banelli, Pilot-assisted time-varying channel estimation for OFDM systems. IEEE Trans. Signal Process. 55, 2226–2238 (2007)

    Article  MathSciNet  Google Scholar 

  22. Z. Tang, G. Leus, Time-varying MIMO–OFDM channel estimation with aid of pilots. EURASIP J. Adv. Signal Process. 1, 74 (2011)

    Article  Google Scholar 

  23. Z. Tang, R. Remis, M.L. Nordenvaad, On preconditioned conjugate gradient method for time-varying OFDM channel equalization, in Proc. IEEE Int. Conf. Acoust., Speech, Signal Process. (ICASSP), vol. 5 (Kyoto Press, Kyoto, 2012), pp. 2119–2122

    Google Scholar 

  24. S. Tomasin, A. Gorokhov, H. Yang, J.-P. Linnartz, Iterative interference cancellation and channel estimation for mobile OFDM. IEEE Trans. Wirel. Commun. 4, 238–245 (2005)

    Article  Google Scholar 

  25. M. Visintin, Karhunen-Loéve expansion of a fast Rayleigh fading process. IET Electron. Lett. 32, 1712–1713 (1996)

    Article  Google Scholar 

  26. Z. Wang, G.B. Giannakis, Wireless multicarrier communications: where Fourier meets Shannon. IEEE Signal Process. Mag. 17, 29–48 (2000)

    Article  Google Scholar 

  27. T. Zemen, C.F. Mecklenbrauker, Time-variant channel estimation using discrete prolate spheroidal sequences. IEEE Trans. Signal Process. 53, 3597–3607 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

This work was supported in part by NSFC (project 61302140).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Xu.

Appendix: Detailed Derivation of (9)

Appendix: Detailed Derivation of (9)

Let us start from the noiseless version of (8) as

$$\begin{aligned} {\bf r}^{(p)} =& \sum_{q=- Q}^Q {{{\bf{D}}^{(p)}_{q}} {{\bf \Delta}^{(p)}_q} {\bf{b}}^{(p)}}, \end{aligned}$$

where \({{\bf{D}}^{(p)}_{q}}\) is a submatrix obtained from \({{\bf{D}}_{q}}\) by only selecting rows (columns) corresponding to \({\bf r}^{(p)}\) in \({{\bf{r}}_{\rm{F}}}\) (\({\bf b}^{(p)}\) in \({\bf b} \)), and \({{\bf \Delta}^{(p)}_{q}}\) is obtained from \({{\bf \Delta}_{q}}\) by selecting the rows of \({\bf b}^{(p)}\) in \({\bf b}\).

We first notice that \({\bf \Delta} _{q} = \operatorname{diag} ( {\bf F}^{(L)} {\bf c}_{q} )\) as specified in (7), and thus we can specify \({{\bf \Delta}^{(p)}_{q}} \) as

$$\begin{aligned} {{\bf \Delta}^{(p)}_q} = \operatorname{diag} \bigl( {\bf F}^{(L,p)} {\bf c}_q \bigr), \end{aligned}$$

where \({\bf{F}}^{(L,p)} \) collects the rows of \({\bf{F}}^{(L)}\) corresponding to the positions of \({\bf b}^{(p)}\) in \({\bf b}\).

To this end, it is clear that

$$\begin{aligned} {{\bf \Delta}^{(p)}_q} {\bf{b}}^{(p)} =& \operatorname{diag} \bigl( {\bf F}^{(L,p)} {\bf c}_q \bigr) { \bf{b}}^{(p)} \\ =& \operatorname{diag} \bigl( {\bf{b}}^{(p)} \bigr) {\bf F}^{(L,p)} {\bf c}_q. \end{aligned}$$
(25)

Substituting (25) into \({\bf r}^{(p)}\), we obtain

$$\begin{aligned} {\bf r}^{(p)} =& \sum_{q=- Q}^Q {{\bf{D}}^{(p)}_{q}} \bigl( \operatorname{diag} \bigl({ \bf{b}}^{(p)} \bigr) {\bf F}^{(L,p)} \bigr) {\bf c}_q \\ =& \bigl[{{\bf{D}}^{(p)}_{-Q}}, \ldots, {{ \bf{D}}^{(p)}_{Q}} \bigr] \\ &{}\times {\bf I}_{2Q+1} \otimes \bigl( \operatorname{diag} \bigl( { \bf{b}}^{(p)} \bigr) {\bf F}^{(L,p)} \bigr) \\ &{} \times \bigl[{\bf c}_{-Q}^T, \ldots, {\bf c}_{Q}^T \bigr]^T \\ =& {{\bf{D}}^{(p)}} \bigl( {{\bf I}_{2Q+1} \otimes \bigl( \operatorname{diag} \bigl( {\bf{b}}^{(p)} \bigr) {\bf F}^{(L,p)} \bigr)} \bigr){\bf{c}} , \end{aligned}$$
(26)

where ⊗ stands for the Kronecker product, \({{\bf{D}}^{(p)}} =[{{\bf{D}}^{(p)}_{-Q}}, \ldots, {{\bf{D}}^{(p)}_{Q}}] \) and \({\bf c} = [{\bf c}_{-Q}^{T}, \ldots, {\bf c}_{Q}^{T} ]^{T} \).

Consequently, if we denote

$$\begin{aligned} {\bf A }^{(p)} = {{\bf{D}}^{(p)}} \bigl( {{{ \bf{I}}_{2Q + 1}} \otimes \bigl( {\operatorname{diag} \bigl( {{ \bf{b}}^{(p)}} \bigr) {\bf{F}}^{(L,p)}} \bigr)} \bigr) \end{aligned}$$

as defined in (10), we obtain

$$\begin{aligned} {\bf r}^{(p)}={\bf A}^{(p)}{\bf{c}} \end{aligned}$$

which is the noiseless version of (9).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guan, Y., Xu, T., van Leuken, R. et al. Parallel Channel Estimator and Equalizer for Mobile OFDM Systems. Circuits Syst Signal Process 33, 839–861 (2014). https://doi.org/10.1007/s00034-013-9664-6

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00034-013-9664-6

Keywords