Abstract
Leveraging observed anomalies in anomaly detection can significantly improve detection accuracy. Assuming that observed anomalies cover all anomaly distributions, existing methods commonly learn the anomaly distributions from these observed anomalies and assign each object an anomaly score according to the similarities between it and observed anomalies. However, these observed anomalies may partially cover anomaly distributions, which severely restrains the performance in detecting uncovered anomalies. To address this issue, we propose a novel collaborative embedding network for this task, named CenAD. By leveraging partially observed anomalies, the collaborative learning derives a loss with maximum neighbor dispersion and minimum volume estimation as guidance to make anomalies more dispersed. Each object is assigned to an anomaly score by its contributions to data dispersion, which distinguishes these anomalies from the entire data effectively. To investigate the effectiveness of CenAD with partially observed anomalies, we conduct extensive results on several datasets to validate the superiority of our method, in which we obtain average improvement up to 13.92% in AUC-ROC and 29.44% in AUC-PR compared with previous methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Aggarwal, C.C.: Supervised outlier detection. In: Outlier Analysis, pp. 219–248. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-47578-3_7
Anguita, D., Ghio, A., Oneto, L., Parra, X., Reyes-Ortiz, J.L.: A public domain dataset for human activity recognition using smartphones. In: Esann (2013)
Aytekin, C., Ni, X., Cricri, F., Aksu, E.: Clustering and unsupervised anomaly detection with l 2 normalized deep auto-encoder representations. In: 2018 International Joint Conference on Neural Networks (IJCNN), pp. 1–6. IEEE (2018)
Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. (CSUR) 41(3), 15 (2009)
Deng, L.: The mnist database of handwritten digit images for machine learning research [best of the web]. IEEE Signal Process. Mag. 29(6), 141–142 (2012)
Eskin, E., Arnold, A., Prerau, M., Portnoy, L., Stolfo, S.: A geometric framework for unsupervised anomaly detection. In: Applications of Data Mining in Computer Security, pp. 77–101. Springer, Boston (2002). https://doi.org/10.1007/978-1-4615-0953-0_4
Hinton, G., Srivastava, N., Swersky, K.: Overview of mini-batch gradient descent. Neural Networks for Machine Learning 575 (2012)
Hull, J.J.: A database for handwritten text recognition research. IEEE Trans. Pattern Anal. Mach. Intell. 16(5), 550–554 (1994)
Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation forest. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 413–422. IEEE (2008)
Maas, A.L., Hannun, A.Y., Ng, A.Y.: Rectifier nonlinearities improve neural network acoustic models. In: Proceedings of ICML, vol. 30, p. 3 (2013)
McGlohon, M., Bay, S., Anderle, M.G., Steier, D.M., Faloutsos, C.: Snare: a link analytic system for graph labeling and risk detection. In: Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1265–1274. ACM (2009)
Moustafa, N., Slay, J.: Unsw-nb15: a comprehensive data set for network intrusion detection systems (unsw-nb15 network data set). In: 2015 Military Communications and Information Systems Conference (MilCIS), pp. 1–6. IEEE (2015)
Pang, G., Cao, L., Chen, L., Liu, H.: Learning representations of ultrahigh-dimensional data for random distance-based outlier detection. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2041–2050. ACM (2018)
Pang, G., Hengel, A.v.d., Shen, C.: Weakly-supervised deep anomaly detection with pairwise relation learning. arXiv preprint arXiv:1910.13601 (2019)
Pang, G., Shen, C., van den Hengel, A.: Deep anomaly detection with deviation networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 353–362. ACM (2019)
Pang, G., Ting, K.M., Albrecht, D.: Lesinn: detecting anomalies by identifying least similar nearest neighbours. In: 2015 IEEE International Conference on Data Mining Workshop (ICDMW), pp. 623–630. IEEE (2015)
Ruff, L., et al.: Deep one-class classification. In: International Conference on Machine Learning, pp. 4393–4402 (2018)
Ruff, L., et al.: Deep semi-supervised anomaly detection. arXiv preprint arXiv:1906.02694 (2019)
Sakurada, M., Yairi, T.: Anomaly detection using autoencoders with nonlinear dimensionality reduction. In: Proceedings of the MLSDA 2014 2nd Workshop on Machine Learning for Sensory Data Analysis, p. 4. ACM (2014)
Tamersoy, A., Roundy, K., Chau, D.H.: Guilt by association: large scale malware detection by mining file-relation graphs. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1524–1533. ACM (2014)
Wang, C.D., Deng, Z.H., Lai, J.H., Philip, S.Y.: Serendipitous recommendation in e-commerce using innovator-based collaborative filtering. IEEE Trans. Cybern. 49(7), 2678–2692 (2018)
Wang, H., Yang, Y., Liu, B., Fujita, H.: A study of graph-based system for multi-view clustering. Knowl.-Based Syst. 163, 1009–1019 (2019)
Zhang, Y.L., Li, L., Zhou, J., Li, X., Zhou, Z.H.: Anomaly detection with partially observed anomalies. In: Companion Proceedings of the Web Conference 2018, pp. 639–646. International World Wide Web Conferences Steering Committee (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Cheng, L., Li, B., He, R., Yao, F. (2024). CenAD: Collaborative Embedding Network for Anomaly Detection with Leveraging Partially Observed Anomalies. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14450. Springer, Singapore. https://doi.org/10.1007/978-981-99-8070-3_32
Download citation
DOI: https://doi.org/10.1007/978-981-99-8070-3_32
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8069-7
Online ISBN: 978-981-99-8070-3
eBook Packages: Computer ScienceComputer Science (R0)