Skip to main content

L-EfficientUNet: Lightweight End-to-End Monocular Depth Estimation for Mobile Robots

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14274))

Included in the following conference series:

  • 849 Accesses

Abstract

In order to solve the problems of monocular depth estimation based on deep learning, such as the amount of computation and parameters of deep network architecture is too large and difficult to be applied in engineering equipment, a lightweight end-to-end monocular depth estimation model is proposed. Firstly, an improved feature extraction module is designed based on migration learning, and the effects of scaling the model’s depth, width, and input image resolution on the model’s accuracy and computational resources are also considered. An optimized combination of model expansion is used to ensure the model’s accuracy and save computational resources simultaneously. Secondly, the fusion loss function is designed to fully consider the characteristics between the predicted value and the real value of the image, reduce the storage requirements and computational complexity of the model, and maintain the accuracy of the model in the reasoning phase. The experimental results on the NYU Depth-V2 dataset show that the proposed method has an average accuracy improvement of 0.086 with a threshold ratio of 1.25, and an average structural similarity improvement of 0.006 in depth maps. The method in this paper uses only 5.9M parametric quantities and 4.4G multiplicative computations, which are 16.982M and 20.544G lower than the comparative literatures. The method in this paper can be deployed on the mobile robot with Raspberry Pi 4 4 GB and achieve an inference speed of 5 Hz, which is 2.86 times faster than the comparative literatures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, X., Kundu, K., Zhang, Z., Ma, H., Fidler, S., Urtasun, R.: Monocular 3D object detection for autonomous driving. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2147–2156 (2016)

    Google Scholar 

  2. Ren, Z., Meng, J., Yuan, J.: Depth camera based hand gesture recognition and its applications in human-computer-interaction. In: 2011 8th International Conference on Information, Communications & Signal Processing, pp. 1–5 (2011)

    Google Scholar 

  3. Bai, H., Gao, L., El-Sana, J., Billinghurst, M.: Free-hand interaction for handheld augmented reality using an RGB-depth camera. In: SIGGRAPH Asia 2013 Symposium on Mobile Graphics and Interactive Applications, SA 2013, pp. 1–4. Association for Computing Machinery, New York (2013)

    Google Scholar 

  4. Kong, Y., Fu, Y., Song, R.: Traversability analysis for quadruped robots navigation in outdoor environment. In: Liu, XJ., Nie, Z., Yu, J., Xie, F., Song, R. (eds.) ICIRA 2021. LNCS, vol. 13014, pp. 246–254. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-89098-8_23

  5. Li, Y., Xiao, N., Huo, X., Wu, X.: Knowledge-enhanced scene context embedding for object-oriented navigation of autonomous robots. In: Liu, H., et al. (eds.)  ICIRA 2022. LNCS, vol. 13455, pp. 3–12. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13844-7_1

  6. Zhang, Z.: Microsoft kinect sensor and its effect. IEEE MultiMedia 19(2), 4–10 (2012)

    Google Scholar 

  7. Yang, S.-W., Wang, C.-C.: On solving mirror reflection in LIDAR sensing. IEEE/ASME Trans. Mech. 16(2), 255–265 (2011)

    Google Scholar 

  8. Li, Y., Ibanez-Guzman, J.: Lidar for autonomous driving.: the principles, challenges, and trends for automotive Lidar and perception systems. IEEE Signal Process. Mag. 37(4), 50–61 (2020)

    Google Scholar 

  9. Alhashim, I., Wonka, P.: High quality monocular depth estimation via transfer learning. arXiv, March 10 (2019)

    Google Scholar 

  10. Hu, Y., Wang, Z., Chen, J., Wang, W.: Context dual-branch attention network for depth completion of transparent object. In: Liu, H., et al. (eds.)  ICIRA 2022. LNCS, vol. 13458, pp. 604–614. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-13841-6_54

  11. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. arXiv, May 18 (2015)

    Google Scholar 

  12. Saxena, A., Chung, S., Ng, A.: Learning depth from single monocular images. In: Advances in Neural Information Processing Systems. MIT Press (2005)

    Google Scholar 

  13. Liu, B., Gould, S., Koller, D.: Single image depth estimation from predicted semantic labels. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 1253–1260 (2010)

    Google Scholar 

  14. Dube, D., Zell, A.: Real-time plane extraction from depth images with the randomized hough transform. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1084–1091 (2011)

    Google Scholar 

  15. Eigen, D., Puhrsch, C., Fergus, R.: Depth map prediction from a single image using a multi-scale deep network. In: Advances in Neural Information Processing Systems, Curran Associates (2014)

    Google Scholar 

  16. Liu, F., Shen, C., Lin, G.: Deep convolutional neural fields for depth estimation from a single image. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5162–5170 (2015)

    Google Scholar 

  17. Cao, Y., Wu, Z., Shen, C.: Estimating depth from monocular images as classification using deep fully convolutional residual networks. IEEE Trans. Circuits Syst. Video Technol. 28(11), 3174–3182 (2018)

    Google Scholar 

  18. Laina, I., Rupprecht, C., Belagiannis, V., Tombari, F., Navab, N.: Deeper depth prediction with fully convolutional residual networks. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 239–248 (2016)

    Google Scholar 

  19. Ummenhofer, B., et al.: DeMoN.: depth and motion network for learning monocular stereo. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5038–5047 (2017)

    Google Scholar 

  20. Jiang, J., Zheng, L., Luo, F., Zhang, Z.: RedNet: residual encoder-decoder network for indoor RGB-D semantic segmentation, 06 August 2018

    Google Scholar 

  21. Mao, X., Shen, C., Yang, Y.-B.: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections. In: Neural Information Processing Systems, Curran Associates (2016)

    Google Scholar 

  22. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition, 10 April 2015

    Google Scholar 

  23. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition, 10 December 2015

    Google Scholar 

  24. Huang, G., Liu, Z., van der Maaten, L., Weinberger, K.Q.: Densely connected convolutional networks, 28 January 2018

    Google Scholar 

  25. Tan, M., Le, Q.V.: EfficientNet: rethinking model scaling for convolutional neural networks, 11 September (2020)

    Google Scholar 

  26. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications, 16 April 2017

    Google Scholar 

  27. Hu, J., Shen, L., Albanie, S., Sun, G., Wu, E.: Squeeze-and-excitation networks, 16 May 2019

    Google Scholar 

  28. Higher accuracy on vision models with EfficientNet-Lite. https://blog.tensorflow.org/2020/03/higher-accuracy-on-vision-models-with-efficientnet-lite.html. Accessed 03 Jan 2023

  29. Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54

  30. Ma, F., Karaman, S.: Sparse-to-dense: depth prediction from sparse depth samples and a single image. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 4796–4803 (2018)

    Google Scholar 

  31. Eigen, D., Fergus, R.: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2650–2658 (2015)

    Google Scholar 

  32. Russakovsky, O., et al.: ImageNet large scale visual recognition challenge, 29 January 2015

    Google Scholar 

  33. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification, 06 February 2015

    Google Scholar 

  34. Wofk, D., Ma, F., Yang, T.-J., Karaman, S., Sze, V.: FastDepth: fast monocular depth estimation on embedded systems. In: 2019 International Conference on Robotics and Automation (ICRA), pp. 6101–6108 (2019)

    Google Scholar 

  35. Rudolph, M., Dawoud, Y., Güldenring, R., Nalpantidis, L., Belagiannis, V.: Lightweight monocular depth estimation through guided decoding. In: 2022 International Conference on Robotics and Automation (ICRA), pp. 2344–2350 (2022)

    Google Scholar 

Download references

Acknowledgement

This work is supported by the National Natural Science Foundation of China (No. 61972091), Natural Science Foundation of Guangdong Province of China (No. 2022A1515010101, No. 2021A1515012639), the Key Research Projects of Ordinary Universities in Guangdong Province (No. 2019KZDXM007, No. 2020ZDZX3049), the Scientific and Technological Innovation Project of Foshan City (No. 2020001003285), National Natural Science Foundation of China under Grant (No. 32171909, No. 51705365) and Featured Innovation Project of Foshan Education Bureau (No. 2022DZXX06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangyu Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, X. et al. (2023). L-EfficientUNet: Lightweight End-to-End Monocular Depth Estimation for Mobile Robots. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14274. Springer, Singapore. https://doi.org/10.1007/978-981-99-6501-4_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6501-4_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6500-7

  • Online ISBN: 978-981-99-6501-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics