Skip to main content

An Unsupervised Video Summarization Method Based on Multimodal Representation

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14090))

Included in the following conference series:

Abstract

A good video summary should convey the whole story and feature the most important content. However, the importance of video content is often subjective, and users should have the option to personalize the summary by using natural language to specify what is important to them. Moreover, existing methods usually apply only visual cues to solve generic video summarization tasks, while this work introduces a single unsupervised multi-modal framework for addressing both generic and query-focused video summarization. We use a multi-head attention model to represent the multi-modal feature. We apply a Transformer-based model to learn the frame scores based on their representative, diversity and reconstruction losses. Especially, we develop a novel representative loss to train the model based on both visual and semantic information. We outperform previous state-of-the-art work with superior results on both generic and query-focused video summarization datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cai, S., Zuo, W., Davis, L., Zhang, L.: Weakly-supervised video summarization using variational encoder-decoder and web prior. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018, pp. 193–210. Springer International Publishing, Cham (2018)

    Google Scholar 

  2. Avila, S., Lopes, A., Antonio da Luz Jr., Araújo, A.: VSUMM: a mechanism designed to produce static video summaries and a novel evaluation method. Pattern Recognit. Lett. 32(1), 56–68 (2011)

    Google Scholar 

  3. Gong, B., Chao, W., Grauman, K., Sha F.: Diverse sequential subset selection for supervised video summarization. In: NIPS 2014, pp. 2069–2077. MIT Press, Cambridge, MA, USA, (2014)

    Google Scholar 

  4. Gygli, M., Grabner, H., Riemenschneider, H., Van Gool, L.: Creating Summaries from User Videos. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8695, pp. 505–520. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10584-0_33

    Chapter  Google Scholar 

  5. He, X., et al.: Unsupervised video summarization with attentive conditional generative adversarial networks. In: ACM Multimedia 2019 (2019)

    Google Scholar 

  6. Iashin, V., Rahtu, E.: A better use of audio-visual cues: dense video captioning with bi-modal transformer. In: BMVC 2020 (2020)

    Google Scholar 

  7. Lee, Y., Ghosh, J., Grauman, K.: Discovering important people and objects for egocentric video summarization. In: CVPR 2012, pp. 1346–1353 (2012)

    Google Scholar 

  8. Lei, Z., Sun, K., Zhang, Q., Qiu, G.: User video summarization based on joint visual and semantic affinity graph. In: ACM Multimedia 2016 Workshop on Vision and Language Integration Meets Multimedia Fusion, pp. 45–52 (2016)

    Google Scholar 

  9. Li, Y., Wang, L., Yang, T., Gong, B.: How Local Is the Local Diversity? Reinforcing Sequential Determinantal Point Processes with Dynamic Ground Sets for Supervised Video Summarization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 156–174. Springer, Cham (2018)

    Chapter  Google Scholar 

  10. Mahasseni, B., Lam, M., Todorovic, S.: Unsupervised video summarization with adversarial LSTM networks. In: CVPR 2017, pp. 2982–2991 (2017)

    Google Scholar 

  11. Mihalcea, R., Tarau, P.: TextRank: bringing order into text. In: Conference on Empirical Methods in Natural Language Processing 2004, pp. 404–411 (2004)

    Google Scholar 

  12. Narasimhan, M., Rohrbach, A., Darrell, T.: CLIP-It! Language-guided video summarization. In: Ranzato, M., Beygelzimer, A., Dauphin, Y., Liang, P., Vaughan, J. (eds.) NIPS 2021, pp. 13988–14000 (2021)

    Google Scholar 

  13. Park, J., Lee, J., Kim, I.-J., Sohn, K.: SumGraph: Video Summarization via Recursive Graph Modeling. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12370, pp. 647–663. Springer, Cham (2020)

    Google Scholar 

  14. Rochan, M., Wang, Y.: Video summarization by learning from unpaired data. In: CVPR 2019, pp. 7902–7911 (2019)

    Google Scholar 

  15. Rochan, M., Ye, L., Wang, Y.: Video Summarization Using Fully Convolutional Sequence Networks. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11216, pp. 358–374. Springer, Cham (2018)

    Chapter  Google Scholar 

  16. Sharghi, A., Gong, B., Shah, M.: Query-Focused Extractive Video Summarization. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 3–19. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_1

    Chapter  Google Scholar 

  17. Sharghi, A., Laurel, J., Gong, B.: Query-focused video summarization: dataset, evaluation, and a memory network based approach. In: CVPR 2017, pp. 2127–2136 (2017)

    Google Scholar 

  18. Song, Y., Vallmitjana, J., Stent, A., Jaimes, A.: TVSum: summarizing web videos using titles. In: CVPR 2015, pp. 5179–5187 (2015)

    Google Scholar 

  19. Vaswani, A., et al.: Attention is all you need. In: Guyon, I., et al. (eds.) NIPS 2017, pp. 5998–6008, Long Beach, CA, USA (2017)

    Google Scholar 

  20. Yuan, L., Tay, F., Li, P., Zhou, L., Feng, J.: Cycle-SUM: cycle-consistent adversarial LSTM networks for unsupervised video summarization. In: AAAI 2019 (2019)

    Google Scholar 

  21. Zhang, K., Chao, W., Sha, F., Grauman, K.: Summary transfer: exemplar-based subset selection for video summarization. In: CVPR 2016 (2016)

    Google Scholar 

  22. Zhang, K., Chao, W.-L., Sha, F., Grauman, K.: Video Summarization with Long Short-Term Memory. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9911, pp. 766–782. Springer, Cham (2016)

    Chapter  Google Scholar 

  23. Zhang, K., Grauman, K., Sha, F.: Retrospective Encoders for Video Summarization. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11212, pp. 391–408. Springer, Cham (2018)

    Chapter  Google Scholar 

  24. Zhang, Q., Qiu, G.: Bundling centre for landmark image discovery. In: ICMR 2015, pp. 179–186 (2015)

    Google Scholar 

  25. Zhao, B., Li, X., Lu, X.: Hierarchical recurrent neural network for video summarization. In: Liu, Q., et al. (eds.) ACMM 2017, pp. 863–871 (2017)

    Google Scholar 

  26. Zhao, B., Li, X., Xiaoqiang, L.: TTH-RNN: tensor-train hierarchical recurrent neural network for video summarization. IEEE Trans. Ind. Electron. 68(4), 3629–3637 (2021)

    Article  Google Scholar 

  27. Zhou, K., Qiao Y.: Deep reinforcement learning for unsupervised video summarization with diversity-representativeness reward. In: AAAI 2017 (2017)

    Google Scholar 

  28. Saquil, Y., Chen, D., He, Y., Li, C., Yang, Y.-L.: Multiple pairwise ranking networks for personalized video summarization. In: ICCV 2021, pp. 1718–1727 (2021)

    Google Scholar 

  29. Lei, J., Berg, T.L., Bansal, M.: QVHightlights: detecting moments and highlights in videos via natural language queries. In: NIPS 2021 (2021)

    Google Scholar 

  30. Liu, Y., Li, S., Wu, Y., Chen, C., Shan, Y., Qie, X.: Umt: unified multimodal transformers for joint video moment retrieval and highlight detection. In: CVPR 2022 (2022)

    Google Scholar 

  31. Wu, G., Lin, J., Silva, C.T.: Intentvizor: towards generic query guided interactive video summarization. In: CVPR 2022, pp. 10503–10512 (2022)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuo Lei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lei, Z., Yu, Q., Shou, L., Li, S., Mao, Y. (2023). An Unsupervised Video Summarization Method Based on Multimodal Representation. In: Huang, DS., Premaratne, P., Jin, B., Qu, B., Jo, KH., Hussain, A. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2023. Lecture Notes in Computer Science(), vol 14090. Springer, Singapore. https://doi.org/10.1007/978-981-99-4761-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-4761-4_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-4760-7

  • Online ISBN: 978-981-99-4761-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics