Skip to main content

An Automatic Recommendation Method for Single-Cell DNA Variant Callers Based on Meta-Learning Framework

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2024)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 14955))

Included in the following conference series:

  • 578 Accesses

Abstract

The rapid expansion of single-cell sequencing-based research has motivated a proliferation of variant callers on the sequencing data. Due to the differences on calling strategies, these callers often exhibit varying performance when applied across heterogeneous sequencing samples. Selecting a suitable caller that fits for the data on-hand becomes an overwhelming task for researchers in this field. Thus, in this study, an automatic recommendation method for single-cell DNA (scDNA) variant callers is proposed. This recommender is designed on meta-learning framework. It explores the underlying associations between scDNA data features and the optimal variant caller on specific performance metric. The recommender is trained by benchmark sequencing datasets, and base on this, recommend appropriate caller for new sequencing data. A series of experiments on different datasets and various configurations have been conducted to validate the proposed method. The results demonstrate that the average performance of this recommendation method outperforms fixed and random strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ni, X., et al.: Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients. Proc. Natl. Acad. Sci. 110(52), 21083–21088 (2013)

    Article  Google Scholar 

  2. Xu, X., et al.: Single-cell exome sequencing reveals single-nucleotide mutation characteristics of a kidney tumor. Cell 148(5), 886–895 (2012)8

    Google Scholar 

  3. Navin, N.E.: Cancer genomics: one cell at a time. Genome Biol. 15, 1–13 (2014)

    Article  Google Scholar 

  4. Zafar, H., Wang, Y., Nakhleh, L., Navin, N., Chen, K.: Monovar: singlenucleotide variant detection in single cells. Nat. Methods 13(6), 505–507 (2016)

    Article  Google Scholar 

  5. Lähnemann, D., Köster, J., Fischer, U., Borkhardt, A., McHardy, A.C., Schönhuth, A.: Accurate and scalable variant calling from single cell DNA sequencing data with prosolo. Nat. Commun. 12(1), 6744 (2021)

    Article  Google Scholar 

  6. Singer, J., Kuipers, J., Jahn, K., Beerenwinkel, N.: Single-cell mutation identification via phylogenetic inference. Nat. Commun. 9(1), 5144 (2018)

    Article  Google Scholar 

  7. Edrisi, M., et al.: Phylovar: toward scalable phylogenyaware inference of single-nucleotide variations from single-cell DNA sequencing data. Bioinformatics 38(Supplement 1), i195–i202 (2022)

    Article  Google Scholar 

  8. Bahonar, S., Montazeri, H.: Somatic single-nucleotide variant calling from single-cell DNA sequencing data using SCAN-SNV. In: Ng, C., Piscuoglio, S. (eds.) Variant Calling. Methods in Molecular Biology, vol. 2493, pp. 267–277. Springer, New York (2022). https://doi.org/10.1007/978-1-0716-2293-3_17

  9. Dong, X., et al.: Accurate identification of single-nucleotide variants in whole-genome amplified single cells. Nat. Methods 14(5), 491–493 (2017)

    Article  Google Scholar 

  10. Hård, J., et al.: Conbase: a software for discovery of clonal somatic mutations in single cells through read phasing. bioRxiv p. 259994 (2018) [8]

    Google Scholar 

  11. Valecha, M., Posada, D.: Somatic variant calling from single-cell DNA sequencing data. Comput. Struct. Biotechnol. J. 20, 2978–2985 (2022)

    Article  Google Scholar 

  12. Khan, I., Zhang, X., Rehman, M., Ali, R.: A literature survey and empirical study of meta-learning for classifier selection. IEEE Access 8, 10262–10281 (2020)

    Article  Google Scholar 

  13. Krishnaveni, N., Radha, V.: Feature selection algorithms for data mining classification: a survey. Indian J. Sci. Technol. 12(6), 1–11 (2019)

    Google Scholar 

  14. Zook, J.M., et al.: Extensive sequencing of seven human genomes to characterize benchmark reference materials. Sci. Data 3(1), 1–26 (2016)

    Article  Google Scholar 

  15. Posada, D.: CellCoal: coalescent simulation of single-cell sequencing samples. Mol. Biol. Evol. 37(5), 1535–1542 (2020)

    Article  MathSciNet  Google Scholar 

  16. Yu, Z., Du, F., Sun, X., Li, A.: SCSsim: an integrated tool for simulating single-cell genome sequencing data. Bioinformatics 36(4), 1281–1282 (2020)

    Article  Google Scholar 

  17. Feng, X., Chen, L.: Scsilicon: a tool for synthetic single-cell DNA sequencing data generation. BMC Genom. 23(Suppl 4), 359 (2022)

    Article  Google Scholar 

  18. El Nagar, Z.M., Barakat, D.H., Rabie, M.A.E.M., Thabeet, D.M., Mohamed, M.Y.: Relation of non-suicidal self-harm to emotion regulation and alexithymia in sexually abused children and adolescents. J. Child Sex. Abus. 31(4), 431–446 (2022)

    Article  Google Scholar 

  19. Song, Q., Wang, G., Wang, C.: Automatic recommendation of classification algorithms based on data set characteristics. Pattern Recogn. 45(7), 2672–2689 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiayin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Zhao, X., Wang, J. (2024). An Automatic Recommendation Method for Single-Cell DNA Variant Callers Based on Meta-Learning Framework. In: Peng, W., Cai, Z., Skums, P. (eds) Bioinformatics Research and Applications. ISBRA 2024. Lecture Notes in Computer Science(), vol 14955. Springer, Singapore. https://doi.org/10.1007/978-981-97-5131-0_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5131-0_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5130-3

  • Online ISBN: 978-981-97-5131-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics