Abstract
Closeness centrality is a type of measure that usually used in social network analysis (SNA). For personal privacy, we study how to help important individuals avoid being detected by closeness centrality analysis. In this paper, we present an optimization problem of finding k edges removed to minimize leader node closeness value to hide leader. We consider this problem in the undirected graph and prove its NP-completeness by reduction from the Hamiltonian cycle problem. Hence, we propose a greedy algorithm with a \((1-\frac{1}{e})\) - approximation lower bound and design UpdateCloseness algorithm to reduce time cost by Breadth-First Search algorithm. Experimental results confirm the effectivity of our greedy scheme.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999)
Beauchamp, M.A.: An improved index of centrality. Behav. Sci. 10(2), 161–163 (1965)
Bergamini, E., Borassi, M., Crescenzi, P., Marino, A., Meyerhenke, H.: Computing top-k closeness centrality faster in unweighted graphs. In: ALENEX, pp. 68–80. SIAM (2016)
Berno, B.: Network formation with closeness incentives. In: Naimzada, A.K., Stefani, S., Torriero, A. (eds.) Networks, Topology and Dynamics, vol. 613, pp. 95–109. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-68409-1_4
Bisenius, P., Bergamin, E., Angriman, E., Meyerhenke, H.: Computing top-k closeness centrality in fully-dynamic graphs. In: ALENEX, pp. 21–35. SIAM (2018)
Borassi, M., Crescenzi, P., Marino, A.: Fast and simple computation of top-k closeness centralities. arXiv preprint arXiv:1507.01490 (2015)
Chan, S.Y., Leung, I.X., Liò, P.: Fast centrality approximation in modular networks. In: CNIKM, pp. 31–38. ACM (2009)
Cohen, E., Delling, D., Pajor, T., Werneck, R.F.: Computing classic closeness centrality, at scale. In: COSN, pp. 37–50. ACM (2014)
Crescenzi, P., Dangelo, G., Severini, L., Velaj, Y.: Greedily improving our own closeness centrality in a network. TKDD 11(1), 9 (2016)
ERDdS, P., R&wi, A.: On random graphs i. Publ. Math. Debrecen 6, 290–297 (1959)
Freeman, L.C.: A set of measures of centrality based on betweenness. Sociometry, pp. 35–41 (1977)
Gleiser, P.M., Danon, L.: Community structure in jazz. Adv. Complex Syst. 6(04), 565–573 (2003)
Kas, M., Carley, K.M., Carley, L.R.: Incremental closeness centrality for dynamically changing social networks. In: ASONAM, pp. 1250–1258. ACM (2013)
Krebs, V.E.: Mapping networks of terrorist cells. Connections 24(3), 43–52 (2002)
Le Merrer, E., Le Scouarnec, N., Trédan, G.: Heuristical top-k: fast estimation of centralities in complex networks. Inf. Process. Lett. 114(8), 432–436 (2014)
Marchiori, M., Latora, V.: Harmony in the small-world. Phys. A Stat. Mech. Appl. 285(3–4), 539–546 (2000)
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions-i. Math. Program. 14(1), 265–294 (1978)
Okamoto, K., Chen, W., Li, X.-Y.: Ranking of closeness centrality for large-scale social networks. In: Preparata, F.P., Wu, X., Yin, J. (eds.) FAW 2008. LNCS, vol. 5059, pp. 186–195. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69311-6_21
Olsen, P.W., Labouseur, A.G., Hwang, J.H.: Efficient top-k closeness centrality search. In: ICDE, pp. 196–207. IEEE (2014)
Ressler, S.: Social network analysis as an approach to combat terrorism: past,present, and future research. Homel. Secur. Aff. 2(2) (2006)
Rochat, Y.: Closeness centrality extended to unconnected graphs: the harmonic centrality index. Technical report (2009)
Rozemberczki, B., Davies, R., Sarkar, R., Sutton, C.: Gemsec: graph embedding with self clustering (2018)
Santos, E.E., Korah, J., Murugappan, V., Subramanian, S.: Efficient anytime anywhere algorithms for closeness centrality in large and dynamic graphs. In: IPDPSW, pp. 1821–1830. IEEE (2016)
Sariyuce, A.E., Kaya, K., Saule, E., Catalyurek, U.V.: Incremental algorithms for network management and analysis based on closeness centrality. arXiv preprint arXiv:1303.0422 (2013)
Saxena, A., Gera, R., Iyengar, S.: A faster method to estimate closeness centrality ranking. arXiv preprint arXiv:1706.02083 (2017)
Shaw, M.E.: Group structure and the behavior of individuals in small groups. J. Psychol. 38(1), 139–149 (1954)
Takhteyev, Y., Gruzd, A., Wellman, B.: Geography of twitter networks. Soc. Netw. 34, 73–81 (2012)
Ter Wal, A.L., Boschma, R.A.: Applying social network analysis in economic geography: framing some key analytic issues. Ann. Reg. Sci. 43(3), 739–756 (2009)
Tong, H., Prakash, B.A., Eliassi-Rad, T., Faloutsos, M., Faloutsos, C.: Gelling, and melting, large graphs by edge manipulation. In: CIKM, pp. 245–254. ACM (2012)
Ufimtsev, V., Bhowmick, S.: An extremely fast algorithm for identifying high closeness centrality vertices in large-scale networks. In: IAAA, pp. 53–56. IEEE Press (2014)
Wang, D.E.J.: Fast approximation of centrality. Gr. Algorithms Appl. 5(5), 39 (2006)
Waniek, M., Michalak, T.P., Wooldridge, M.J., Rahwan, T.: Hiding individuals and communities in a social network. Nat. Hum. Behav. 2(2), 139 (2018)
Watts, D.J., Strogatz, S.H.: Collective dynamics of “small-world” networks. Nature 393(6684), 440 (1998)
Yen, C.C., Yeh, M.Y., Chen, M.S.: An efficient approach to updating closeness centrality and average path length in dynamic networks. In: ICDM, pp. 867–876. IEEE (2013)
Zhou, B., Pei, J., Luk, W.: A brief survey on anonymization techniques for privacy preserving publishing of social network data. ACM Sigkdd Explor. Newsl. 10(2), 12–22 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2019 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Ji, J., Wu, G., Duan, C., Ren, Y., Wang, Z. (2019). Greedily Remove k Links to Hide Important Individuals in Social Network. In: Meng, W., Furnell, S. (eds) Security and Privacy in Social Networks and Big Data. SocialSec 2019. Communications in Computer and Information Science, vol 1095. Springer, Singapore. https://doi.org/10.1007/978-981-15-0758-8_17
Download citation
DOI: https://doi.org/10.1007/978-981-15-0758-8_17
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-15-0757-1
Online ISBN: 978-981-15-0758-8
eBook Packages: Computer ScienceComputer Science (R0)