Abstract
Nowadays, more and more knowledge are published in form of RDF triples enriched with numerous types of annotations such as provenance, temporal and geospatial information. Due to the popularity of the ever-growing annotations, graph databases have proposed various storage engine to store these data and extended their query engine to support queries with these annotation constraints. The developers may be curious about the performance of different engines. Regarding the lack of such a benchmark, we develop the first benchmark for this purpose by extending BSBM (one of the most widely used graph database benchmark). We formalize the annotated RDF into a data model with well-defined categories of annotations and their corresponding operators to be supported. Then we extend the data set of BSBM to allow some triples to be annotated with one or more annotations. We further extend the query set to include annotation constraints in a given query, which can be seen as an extension of SPARQL query. We finally select several popular graph databases for benchmark. The experiment results show for each engine, it performs similarly when queried with different type of annotation constraints. No general database designs a special storage or query plan for a specific type of annotations.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
- 4.
We call SPARQL and graph engines which not support aRDF as general SPARQL (gSPARQL) and general graph engines (gGEs) respectively. In the contrast, we call those which support aRDF as extended SPARQL (eSPARQL) and extended graph engines (eGEs). Especially, we summarize these extensions as annotation features.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
References
Bereta, K., Smeros, P., Koubarakis, M.: Representation and querying of valid time of triples in linked geospatial data. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 259–274. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_18
Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 28–37 (2001)
Bizer, C., Schultz, A.: The Berlin SPARQL benchmark (2009)
Garbis, G., Kyzirakos, K., Koubarakis, M.: Geographica: a benchmark for geospatial RDF stores (long version). In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 343–359. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41338-4_22
Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for owl knowledge base systems. Web Seman. Sci. Serv. Agents World Wide Web 3(2), 158–182 (2005)
Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: a federated repository for querying graph structured data from the web. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 211–224. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_16
Hartig, O.: Querying trust in RDF data with tSPARQL. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 5–20. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02121-3_5
Hartig, O., Thompson, B.: Foundations of an alternative approach to reification in RDF. arXiv preprint arXiv:1406.3399 (2014)
Hernández, D., Hogan, A., Krötzsch, M.: Reifying RDF: what works well with wikidata? In: ISWC 2015, Bethlehem, PA, USA, pp. 32–47 (2015)
Klyne, G., Carroll, J.J., McBride, B.: Resource description framework (RDF): concepts and abstract syntax. World Wide Web Consortium Recommendation (2004)
Liu, C., Qi, G., Wang, H., Yu, Y.: Fuzzy reasoning over RDF data using owl vocabulary. In: Proceedings of the 2011 IEEE/WIC/ACM ICWIIAT, pp. 162–169. IEEE Computer Society (2011)
Liu, C., Qi, G., Wang, H., Yu, Y.: Reasoning with large scale ontologies in fuzzy pD* using mapreduce. IEEE Comput. Intell. Mag. 7(2), 54–66 (2012)
Mazzieri, M., Dragoni, A.F.: A fuzzy semantics for the resource description framework (2008)
Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBPedia SPARQL benchmark-performance assessment with real queries on real data. In: ISWC 2011, pp. 454–469 (2011)
Pugliese, A., Udrea, O., Subrahmanian, V.: Scaling RDF with time. In: Proceedings of the 17th International Conference on World Wide Web, pp. 605–614. ACM (2008)
Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP\(^2\)Bench: a SPARQL performance benchmark. In: Data Engineering, 2009. ICDE 2009, pp. 222–233 (2009)
Straccia, U.: A minimal deductive system for general fuzzy RDF. In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp. 166–181. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05082-4_12
Tappolet, J., Bernstein, A.: Applied temporal RDF: efficient temporal querying of RDF data with SPARQL. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 308–322. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02121-3_25
Udrea, O., Recupero, D.R., Subrahmanian, V.S.: Annotated RDF. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 487–501. Springer, Heidelberg (2006). https://doi.org/10.1007/11762256_36
Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data management. Proc. VLDB Endow. 1(1), 1008–1019 (2008)
Acknowledgements
This work was partially supported by the National Science Foundation of China (No: 61402173) and Open Funding Project of Tianjin Key Laboratory of Cognitive Computing and Application.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhang, L., Ruan, T., Wang, H., Xia, Y., Wang, Q., Xu, D. (2017). BSBM+: Extending BSBM to Evaluate Annotated RDF Features on Graph Databases. In: Li, J., Zhou, M., Qi, G., Lao, N., Ruan, T., Du, J. (eds) Knowledge Graph and Semantic Computing. Language, Knowledge, and Intelligence. CCKS 2017. Communications in Computer and Information Science, vol 784. Springer, Singapore. https://doi.org/10.1007/978-981-10-7359-5_13
Download citation
DOI: https://doi.org/10.1007/978-981-10-7359-5_13
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-7358-8
Online ISBN: 978-981-10-7359-5
eBook Packages: Computer ScienceComputer Science (R0)