Skip to main content

BSBM+: Extending BSBM to Evaluate Annotated RDF Features on Graph Databases

  • Conference paper
  • First Online:
Knowledge Graph and Semantic Computing. Language, Knowledge, and Intelligence (CCKS 2017)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 784))

Included in the following conference series:

  • 1066 Accesses

Abstract

Nowadays, more and more knowledge are published in form of RDF triples enriched with numerous types of annotations such as provenance, temporal and geospatial information. Due to the popularity of the ever-growing annotations, graph databases have proposed various storage engine to store these data and extended their query engine to support queries with these annotation constraints. The developers may be curious about the performance of different engines. Regarding the lack of such a benchmark, we develop the first benchmark for this purpose by extending BSBM (one of the most widely used graph database benchmark). We formalize the annotated RDF into a data model with well-defined categories of annotations and their corresponding operators to be supported. Then we extend the data set of BSBM to allow some triples to be annotated with one or more annotations. We further extend the query set to include annotation constraints in a given query, which can be seen as an extension of SPARQL query. We finally select several popular graph databases for benchmark. The experiment results show for each engine, it performs similarly when queried with different type of annotation constraints. No general database designs a special storage or query plan for a specific type of annotations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://wiki.dbpedia.org/.

  2. 2.

    https://www.freebase.com/.

  3. 3.

    www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/ yago-naga/yago/.

  4. 4.

    We call SPARQL and graph engines which not support aRDF as general SPARQL (gSPARQL) and general graph engines (gGEs) respectively. In the contrast, we call those which support aRDF as extended SPARQL (eSPARQL) and extended graph engines (eGEs). Especially, we summarize these extensions as annotation features.

  5. 5.

    www.strabon.di.uoa.gr.

  6. 6.

    http://franz.com/agraph/allegrograph/.

  7. 7.

    www.opengeospatial.org/.

  8. 8.

    https://jena.apache.org/.

  9. 9.

    https://wiki.blazegraph.com/.

  10. 10.

    www.ecustnlplab.com/papers/BSBM+.pdf.

References

  1. Bereta, K., Smeros, P., Koubarakis, M.: Representation and querying of valid time of triples in linked geospatial data. In: Cimiano, P., Corcho, O., Presutti, V., Hollink, L., Rudolph, S. (eds.) ESWC 2013. LNCS, vol. 7882, pp. 259–274. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38288-8_18

    Chapter  Google Scholar 

  2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Sci. Am. 284(5), 28–37 (2001)

    Article  Google Scholar 

  3. Bizer, C., Schultz, A.: The Berlin SPARQL benchmark (2009)

    Google Scholar 

  4. Garbis, G., Kyzirakos, K., Koubarakis, M.: Geographica: a benchmark for geospatial RDF stores (long version). In: Alani, H., Kagal, L., Fokoue, A., Groth, P., Biemann, C., Parreira, J.X., Aroyo, L., Noy, N., Welty, C., Janowicz, K. (eds.) ISWC 2013. LNCS, vol. 8219, pp. 343–359. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41338-4_22

    Chapter  Google Scholar 

  5. Guo, Y., Pan, Z., Heflin, J.: LUBM: a benchmark for owl knowledge base systems. Web Seman. Sci. Serv. Agents World Wide Web 3(2), 158–182 (2005)

    Article  Google Scholar 

  6. Harth, A., Umbrich, J., Hogan, A., Decker, S.: YARS2: a federated repository for querying graph structured data from the web. In: Aberer, K., Choi, K.-S., Noy, N., Allemang, D., Lee, K.-I., Nixon, L., Golbeck, J., Mika, P., Maynard, D., Mizoguchi, R., Schreiber, G., Cudré-Mauroux, P. (eds.) ASWC/ISWC -2007. LNCS, vol. 4825, pp. 211–224. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-76298-0_16

    Chapter  Google Scholar 

  7. Hartig, O.: Querying trust in RDF data with tSPARQL. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 5–20. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02121-3_5

    Chapter  Google Scholar 

  8. Hartig, O., Thompson, B.: Foundations of an alternative approach to reification in RDF. arXiv preprint arXiv:1406.3399 (2014)

  9. Hernández, D., Hogan, A., Krötzsch, M.: Reifying RDF: what works well with wikidata? In: ISWC 2015, Bethlehem, PA, USA, pp. 32–47 (2015)

    Google Scholar 

  10. Klyne, G., Carroll, J.J., McBride, B.: Resource description framework (RDF): concepts and abstract syntax. World Wide Web Consortium Recommendation (2004)

    Google Scholar 

  11. Liu, C., Qi, G., Wang, H., Yu, Y.: Fuzzy reasoning over RDF data using owl vocabulary. In: Proceedings of the 2011 IEEE/WIC/ACM ICWIIAT, pp. 162–169. IEEE Computer Society (2011)

    Google Scholar 

  12. Liu, C., Qi, G., Wang, H., Yu, Y.: Reasoning with large scale ontologies in fuzzy pD* using mapreduce. IEEE Comput. Intell. Mag. 7(2), 54–66 (2012)

    Article  Google Scholar 

  13. Mazzieri, M., Dragoni, A.F.: A fuzzy semantics for the resource description framework (2008)

    Google Scholar 

  14. Morsey, M., Lehmann, J., Auer, S., Ngonga Ngomo, A.-C.: DBPedia SPARQL benchmark-performance assessment with real queries on real data. In: ISWC 2011, pp. 454–469 (2011)

    Google Scholar 

  15. Pugliese, A., Udrea, O., Subrahmanian, V.: Scaling RDF with time. In: Proceedings of the 17th International Conference on World Wide Web, pp. 605–614. ACM (2008)

    Google Scholar 

  16. Schmidt, M., Hornung, T., Lausen, G., Pinkel, C.: SP\(^2\)Bench: a SPARQL performance benchmark. In: Data Engineering, 2009. ICDE 2009, pp. 222–233 (2009)

    Google Scholar 

  17. Straccia, U.: A minimal deductive system for general fuzzy RDF. In: Polleres, A., Swift, T. (eds.) RR 2009. LNCS, vol. 5837, pp. 166–181. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05082-4_12

    Chapter  Google Scholar 

  18. Tappolet, J., Bernstein, A.: Applied temporal RDF: efficient temporal querying of RDF data with SPARQL. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS, vol. 5554, pp. 308–322. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-02121-3_25

    Chapter  Google Scholar 

  19. Udrea, O., Recupero, D.R., Subrahmanian, V.S.: Annotated RDF. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 487–501. Springer, Heidelberg (2006). https://doi.org/10.1007/11762256_36

    Chapter  Google Scholar 

  20. Weiss, C., Karras, P., Bernstein, A.: Hexastore: sextuple indexing for semantic web data management. Proc. VLDB Endow. 1(1), 1008–1019 (2008)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the National Science Foundation of China (No: 61402173) and Open Funding Project of Tianjin Key Laboratory of Cognitive Computing and Application.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haofen Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L., Ruan, T., Wang, H., Xia, Y., Wang, Q., Xu, D. (2017). BSBM+: Extending BSBM to Evaluate Annotated RDF Features on Graph Databases. In: Li, J., Zhou, M., Qi, G., Lao, N., Ruan, T., Du, J. (eds) Knowledge Graph and Semantic Computing. Language, Knowledge, and Intelligence. CCKS 2017. Communications in Computer and Information Science, vol 784. Springer, Singapore. https://doi.org/10.1007/978-981-10-7359-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-10-7359-5_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-10-7358-8

  • Online ISBN: 978-981-10-7359-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics