Abstract
Over the past few years javascript has grown up and revolutionized the web by allowing user defined scripts to run inside a web browser. The application of javascript ranges from providing beautiful visualization to performing complex data analytics and modeling machine learning algorithms. However javascript are also widely being used as a channel to execute malicious activities by means of redirection, drive-by-download, vulnerability exploitation and many more in the client side. In this paper we analyze the lexical, structural and behavior characteristics of javascript code to identify malicious javascript in the wild. Performance evaluation results show that our approach achieves better accuracy, with very small false positive and false negative ratios.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Hao, Y., et al.: JavaScript malicious codes analysis based on naive bayes classification. In: 2014 Ninth International Conference on P2P, Parallel, Grid, Cloud and Internet Computing (3PGCIC). IEEE (2014)
Santos, I., et al.: N-grams-based file signatures for malware detection. ICEIS 2(9), 317–320 (2009)
Wang, W-H, et al.: A static malicious javascript detection using SVM. In: Proceedings of the International Conference on Computer Science and Electronics Engineering, vol. 40 (2013)
Egele, M., Wurzinger, P., Kruegel, C., Kirda, E.: Defending browsers against drive-by downloads: mitigating heap-spraying code injection attacks. In: Flegel, U., Bruschi, D. (eds.) DIMVA 2009. LNCS, vol. 5587, pp. 88–106. Springer, Heidelberg (2009)
Choi, Y., Kim, T., Choi, S., Lee, C.: Automatic detection for javascript obfuscation attacks in web pages through string pattern analysis. In: Lee, Y.-h., Kim, T.-h., Fang, W.-c., Ślęzak, D. (eds.) FGIT 2009. LNCS, vol. 5899, pp. 160–172. Springer, Heidelberg (2009)
Phung, P.H., et al.: Between worlds: securing mixed javascript/actionscript multi-party web content. In: IEEE Transactions on Dependable and Secure Computing, 12 April 2015, pp. 443–457 (2015)
Darling, M., et al.: A lexical approach for classifying malicious URLs. In: 2015 International Conference on High Performance Computing and Simulation (HPCS). IEEE (2015)
Fraiwan, M., et al.: Analysis and identification of malicious javascript code. Inf. Secur. J. A Global Perspect. 1–11 (2012)
Fang, Z., et al.: A half-dynamic classification method on obfuscated malicious JavaScript detection. Int. J. Secur. Appl. 9(6), 251–262 (2015)
Provos, N., Mavrommatis, P., Rajab, M.A., Monrose, F.: All your iframes point to us (2008)
Kim, B.-I., Im, C.-T., Jung, H.-C.: Suspicious malicious web site detection with strength analysis of a javascript obfuscation. Int. J. Adv. Sci. Technol. 26, 19–32 (2011)
Choi, J., et al.: Efficient malicious code detection using n-gram analysis and SVM. In: 2011 14th International Conference on Network-Based Information Systems (NBiS). IEEE, 2011
Chong, C., Liu, D., Lee, W.: Malicious URL detection
Provos, N., et al.: The ghost in the browser: analysis of web-based malware. In: HotBots 2007, p. 4 (2007)
Mutton, P.: EBay scripting flaws being actively exploited by fraudsters. Netcraft, 18 Feburary 2016. Web, 4 June 2016. http://news.netcraft.com/archives/2016/02/18/ebay-scripting-flaws-being-actively-exploited-by-fraudsters.html
Christodorescu, M., et al.: Semantics-aware malware detection. In: 2005 IEEE Symposium on IEEE Security and Privacy (2005)
Cova, M., Kruegel, C., Vigna, G.: Detection and analysis of drive-by-download attacks and malicious JavaScript code. In: Proceedings of the 19th international conference on World wide web. ACM (2010)
Hallaraker, O., Vigna, G.: Detecting malicious javascript code in mozilla. In: Proceedings. 10th IEEE International Conference on Engineering of Complex Computer Systems, ICECCS 2005. IEEE (2005)
Hedin, D., Sabelfeld, A.: Information-flow security for a core of JavaScript. In: 2012 IEEE 25th Computer Security Foundations Symposium (CSF). IEEE (2012)
Feinstein, B., Peck, D., SecureWorks, Inc.: Caffeine monkey: Automated collection, detection and analysis of malicious javascript. Black Hat USA 2007 (2007)
Li, Z., et al.: Knowing your enemy: understanding and detecting malicious web advertising. In: Proceedings of the 2012 ACM Conference on Computer and Communications Security. ACM (2012)
Likarish, P., Jung, E., Jo, I.: Obfuscated malicious javascript detection using classification techniques. In: MALWARE (2009)
Seifert, C., Welch, I., Komisarczuk, P.: Identification of malicious web pages with static heuristics. In: Australasian Telecommunication Networks and Applications Conference. ATNAC 2008. IEEE (2008)
Zarras, A., et al.: The dark alleys of madison avenue: understanding malicious advertisements. In: Proceedings of the 2014 Conference on Internet Measurement Conference. ACM (2014)
Xu, W., Zhang, F., Zhu, S.: JStill: mostly static detection of obfuscated malicious JavaScript code. In: Proceedings of the Third ACM Conference on Data and Application Security and Privacy. ACM (2013)
Canali, D., et al.: Prophiler: a fast filter for the large-scale detection of malicious web pages. In: Proceedings of the 20th International Conference on World Wide Web. ACM (2011)
Jim, T., Swamy, N., Hicks, M.: Defeating script injection attacks with browser-enforced embedded policies. In: Proceedings of the 16th International Conference on World Wide Web. ACM (2007)
Top Sites. Alexa Top 500 Global Sites. Web, 4 June 2016. http://www.alexa.com/topsites
Malware Domain List. Web. 4 June 2016. https://www.malwaredomainlist.com/mdl.php
Zdrnja, B., Brownlee, N., Wessels, D.: Passive monitoring of DNS anomalies. In: Hämmerli, B.M., Sommer, R. (eds.) DIMVA 2007. LNCS, vol. 4579, pp. 129–139. Springer, Heidelberg (2007)
Bilge, L., et al. EXPOSURE: finding malicious domains using passive DNS analysis. In: NDSS (2011)
Antonakakis, M., et al.: Building a dynamic reputation system for DNS. In: USENIX Security Symposium (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
K, S., Poornachandran, P., Nair, A.A., N, S., Kumar, Y., P, H. (2016). MalJs: Lexical, Structural and Behavioral Analysis of Malicious JavaScripts Using Ensemble Classifier. In: Mueller, P., Thampi, S., Alam Bhuiyan, M., Ko, R., Doss, R., Alcaraz Calero, J. (eds) Security in Computing and Communications. SSCC 2016. Communications in Computer and Information Science, vol 625. Springer, Singapore. https://doi.org/10.1007/978-981-10-2738-3_38
Download citation
DOI: https://doi.org/10.1007/978-981-10-2738-3_38
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-10-2737-6
Online ISBN: 978-981-10-2738-3
eBook Packages: Computer ScienceComputer Science (R0)