Abstract
We consider networks of Markov Decision Processes (MDPs) where identical MDPs are placed on N nodes of a graph G. The transition probabilities of an MDP depend on the states of its direct neighbors in the graph, and runs operate by selecting a random node and following a random transition in the chosen device MDP. As the state space of all the configurations of the network is exponential in N, classical analysis are unpractical. We study how a polynomial size statistical representation of the system, which gives the densities of the subgraphs of width k, can be used to analyze its behaviors, generalizing the approximate Model Checking of an MDP. We propose a Structured Population Protocol as a new Population MDP where states are statistical representations of the network, and transitions are inferred from the statistical s tructure. Our main results show that for some large networks, the distributions of probability of the statistics vectors of the population MDP approximate the distributions of probability of the statistics vectors of the real process. Moreover, when the network has some regularity, both real and approximation processes converge to the same distributions.
Work supported by ANR-07-SESU-013 program of the French Research Computer Security program.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agapie, A., Höns, R., ühlenbein, H.: Markov Chain Analysis for One-Dimensional Asynchronous Cellular Automata. Methodology and Computing in Applied Probability 6(2), 181–201 (2004)
Angluin, D., Aspnes, J., Chan, M., Fischer, M.J., Jiang, H., Peralta, R.: Stably computable properties of network graphs. In: Prasanna, V.K., Iyengar, S.S., Spirakis, P.G., Welsh, M. (eds.) DCOSS 2005. LNCS, vol. 3560, pp. 63–74. Springer, Heidelberg (2005)
Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in networks of passively mobile finite-state sensors. Distributed Computing 18(4), 235–253 (2006)
Aspnes, J., Ruppert, E.: An introduction to population protocols. Chemistry 314, 315 (2007)
Barrett, C.L., Hunt, H.B., Marathe, M.V., Ravi, S.S., Rosenkrantz, D.J., Stearns, R.E.: Complexity of reachability problems for finite discrete dynamical systems. Journal of Computer and System Sciences 72(8), 1317–1345 (2006)
Courcoubetis, C., Yannakakis, M.: The complexity of probabilistic verification. JACM 42(4), 857–907 (1995)
de Rougemont, M., Tracol, M.: Statistical analysis for probabilistic processes. In: Proc. IEEE Logic in Computer Science, pp. 299–308 (2009)
Derman, C.: Finite State Markovian Decision Processes. Academic Press, Inc., Orlando (1970)
Durrett, R.: Stochastic spatial models. Siam Review 41(4), 677–718 (1999)
Esparza, J.: Decidability and complexity of Petri net problems-an introduction. In: Reisig, W., Rozenberg, G. (eds.) APN 1998. LNCS, vol. 1491, pp. 374–385. Springer, Heidelberg (1998)
Fischer, E., Magniez, F., de Rougemont, M.: Approximate satisfiability and equivalence. SIAM J. Comput. 39(6), 2251–2281 (2010)
Henzinger, T.A., Mateescu, M., Wolf, V.: Sliding window abstraction for infinite markov chains. In: Bouajjani, A., Maler, O. (eds.) CAV 2009. LNCS, vol. 5643, pp. 337–352. Springer, Heidelberg (2009)
Kahn, J.M., Katz, R.H., Pister, K.S.J.: Next century challenges: mobile networking for Smart Dust. In: Proceedings of the 5th Annual ACM/IEEE International Conference on Mobile Computing and Networking, pp. 271–278. ACM, New York (1999)
Peyronnet, S., De Rougemont, M., Strozecki, Y.: Approximate verification and enumeration problems. In: Roychoudhury, A., D’Souza, M. (eds.) ICTAC 2012. LNCS, vol. 7521, pp. 228–242. Springer, Heidelberg (2012)
Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. John Wiley & Sons, Inc., New York (1994)
Sutner, K.: On the computational complexity of finite cellular automata. Journal of Computer and System Sciences 50(1), 87–97 (1995)
Vardi, M.Y.: Automatic verification of probabilistic concurrent finite state programs. In: FOCS 1984, pp. 327–338 (1985)
Wolfram, S.: Cellular automata. Los Alamos Science 9, 2–21 (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
de Rougemont, M., Tracol, M. (2013). Approximation of Large Probabilistic Networks by Structured Population Protocols. In: Muntean, T., Poulakis, D., Rolland, R. (eds) Algebraic Informatics. CAI 2013. Lecture Notes in Computer Science, vol 8080. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-40663-8_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-40663-8_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-40662-1
Online ISBN: 978-3-642-40663-8
eBook Packages: Computer ScienceComputer Science (R0)