Skip to main content

Query Suggestions for Textual Problem Solution Repositories

  • Conference paper
Advances in Information Retrieval (ECIR 2013)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 7814))

Included in the following conference series:

  • 3085 Accesses

Abstract

Textual problem-solution repositories are available today in various forms, most commonly as problem-solution pairs from community question answering systems. Modern search engines that operate on the web can suggest possible completions in real-time for users as they type in queries. We study the problem of generating intelligent query suggestions for users of customized search systems that enable querying over problem-solution repositories. Due to the small scale and specialized nature of such systems, we often do not have the luxury of depending on query logs for finding query suggestions. We propose a retrieval model for generating query suggestions for search on a set of problem solution pairs. We harness the problem solution partition inherent in such repositories to improve upon traditional query suggestion mechanisms designed for systems that search over general textual corpora. We evaluate our technique over real problem-solution datasets and illustrate that our technique provides large and statistically significant improvements over the state-of-the-art technique in query suggestion.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Feuer, A., Savev, S., Aslam, J.A.: Evaluation of phrasal query suggestions. In: Proceedings of the Sixteenth ACM Conference on Information and Knowledge Management, CIKM, pp. 841–848 (2007)

    Google Scholar 

  2. Cao, H., Jiang, D., Pei, J., He, Q., Liao, Z., Chen, E., Li, H.: Context-aware query suggestion by mining click-through and session data. In: KDD, pp. 875–883 (2008)

    Google Scholar 

  3. Ma, H., Yang, H., King, I., Lyu, M.R.: Learning latent semantic relations from clickthrough data for query suggestion. In: CIKM, pp. 709–718 (2008)

    Google Scholar 

  4. Song, Y., Wei He, L.: Optimal rare query suggestion with implicit user feedback. In: WWW, pp. 901–910 (2010)

    Google Scholar 

  5. Bhatia, S., Majumdar, D., Mitra, P.: Query suggestions in the absence of query logs. In: SIGIR, pp. 795–804 (2011)

    Google Scholar 

  6. Deepak, P., Visweswariah, K., Wiratunga, N., Sani, S.: Two-part segmentation of text documents. In: CIKM (2012)

    Google Scholar 

  7. Xue, X., Jeon, J., Croft, W.B.: Retrieval models for question and answer archives. In: SIGIR, pp. 475–482 (2008)

    Google Scholar 

  8. Fonseca, B.M., Golgher, P.B., Pôssas, B., Ribeiro-Neto, B.A., Ziviani, N.: Concept-based interactive query expansion. In: CIKM, pp. 696–703 (2005)

    Google Scholar 

  9. Jones, R., Rey, B., Madani, O., Greiner, W.: Generating query substitutions. In: WWW, pp. 387–396 (2006)

    Google Scholar 

  10. Boldi, P., Bonchi, F., Castillo, C., Donato, D., Vigna, S.: Query suggestions using query-flow graphs. In: Proceedings of the 2009 Workshop on Web Search Click Data, WSCD 2009, pp. 56–63 (2009)

    Google Scholar 

  11. Cucerzan, S., White, R.W.: Query suggestion based on user landing pages. In: Proceedings of the 30th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, SIGIR, pp. 875–876 (2007)

    Google Scholar 

  12. Bast, H., Weber, I.: Type less, find more: fast autocompletion search with a succinct index. In: SIGIR, pp. 364–371 (2006)

    Google Scholar 

  13. Brown, P.F., Cocke, J., Pietra, S.A.D., Pietra, V.J.D., Jelinek, F., Lafferty, J.D., Mercer, R.L., Roossin, P.S.: A statistical approach to machine translation. Comput. Linguist. 16(2), 79–85 (1990)

    Google Scholar 

  14. Jeon, J., Croft, W.B., Lee, J.H.: Finding similar questions in large question and answer archives. In: CIKM, pp. 84–90 (2005)

    Google Scholar 

  15. Zhou, T.C., Lin, C.Y., King, I., Lyu, M.R., Song, Y.I., Cao, Y.: Learning to suggest questions in online forums. In: AAAI (2011)

    Google Scholar 

  16. Zhou, G., Cai, L., Zhao, J., Liu, K.: Phrase-based translation model for question retrieval in community question answer archives. In: ACL, pp. 653–662 (2011)

    Google Scholar 

  17. Cui, H., Wen, J.R., Nie, J.Y., Ma, W.Y.: Probabilistic query expansion using query logs. In: WWW, pp. 325–332 (2002)

    Google Scholar 

  18. Raghunandan, M.A., Wiratunga, N., Chakraborti, S., Massie, S., Khemani, D.: Evaluation Measures for TCBR Systems. In: Althoff, K.-D., Bergmann, R., Minor, M., Hanft, A. (eds.) ECCBR 2008. LNCS (LNAI), vol. 5239, pp. 444–458. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Massie, S., Wiratunga, N., Craw, S., Donati, A., Vicari, E.: From Anomaly Reports to Cases. In: Weber, R.O., Richter, M.M. (eds.) ICCBR 2007. LNCS (LNAI), vol. 4626, pp. 359–373. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  20. Liu, X., Croft, W.B.: Statistical language modeling for information retrieval. ARIST 39(1), 1–31 (2005)

    Google Scholar 

  21. Smucker, M.D., Allan, J., Carterette, B.: A comparison of statistical significance tests for information retrieval evaluation. In: CIKM, pp. 623–632 (2007)

    Google Scholar 

  22. Deepak, P., Chakraborti, S., Khemani, D.: More of Better: On trade-offs in compacting textual problem solution repositories. In: CIKM, pp. 2321–2324 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

P., D., Chakraborti, S., Khemani, D. (2013). Query Suggestions for Textual Problem Solution Repositories. In: Serdyukov, P., et al. Advances in Information Retrieval. ECIR 2013. Lecture Notes in Computer Science, vol 7814. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36973-5_48

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-36973-5_48

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-36972-8

  • Online ISBN: 978-3-642-36973-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics