Abstract
QKD (Quantum Key Distribution) technology, based on the laws of physics, can create an unconditionally secure key between communication parties. In recent years, researchers draw more and more attention to the QKD technology. Privac amplification is a very significant procedure in QKD system. In this paper, we propose the real-time privacy amplification (RTPA) scheme which converts the weak secret string W to a uniform key that is fully secret from Eve. We implement RTPA scheme based on CLIP (Cvqkd Ldpc experImental Platform) which is connected to the real quantum communication systems. Experimental results show that, our proposed RTPA scheme is very efficient when the bit error rate of quantum channel is lower than 0.06.
Chapter PDF
Similar content being viewed by others
Keywords
References
Bennett, C.H., Brassard, G.: Quantum Cryptography: Public Key Distribution and Coin Tossing. In: Proc. IEEE Int. Conf. Comput. Syst. Signal Process. pp. 175–179 (1984) (QKD)
Ekert, A.K.: Quantum cryptography based on Bell theorem. Phys. Rev. Lett. 67, 661–663 (1991) (QKD)
Brassard, G., Salvail, L.: Secret Key Reconciliation by Public Discussion. In: Helleseth, T. (ed.) EUROCRYPT 1993. LNCS, vol. 765, pp. 410–423. Springer, Heidelberg (1994)
Bennett, C.H., Brassard, G., Crépeau, C., Maurer, U.: Generalized privacy amplification. IEEE Transactions on Information Theory 41(6), 1915–1923 (1995)
Watanabe, Y.: Privacy amplification for quantum key distribution. J. Phys. A: Math. Theor. 40, F99–F104 (2007)
Renner, R., König, R.: Universally Composable Privacy Amplification Against Quantum Adversaries. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 407–425. Springer, Heidelberg (2005)
Zou, D., Zhao, B., Wu, C., Liu, B., Yu, W., Ma, X., Zou, H.: CLIP: A Distributed Emulation Platform for Research on Information Reconciliation. In: NBiS 2012, pp. 721–726 (2012)
Chandran, N., Kanukurthi, B., Ostrovsky, R., Reyzin, L.: Privacy amplification with asymptotically optimal entropy loss. In: Proceedings of the 42nd Annual ACM Symposium on Theory of Computing, pp. 785–794 (2010)
Dodis, Y., Wichs, D.: Non-malleable extractors and symmetric key cryptography from weak secrets. In: Proceedings of the 41st Annual ACM Symposium on Theory of Computing, pp. 601–610 (2009)
Horváth, T., Kish, L.B., Scheuer, J.: Effective privacy amplification for secure classical communications. EPL 94(2), 28002–28007(6) (2011)
Mansour, Y., Nisan, N., Tiwari, P.: The computational complexity of universal hashing. Theoret. Comput. Sci. 107, 121–133 (1993)
Krawczyk, H.: LFSR-Based Hashing and Authentication. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 129–139. Springer, Heidelberg (1994)
Fung, C.-H.F., Ma, X., Chau, H.F.: Practical issues in quantum-key-distribution postprocessing. Phys. Rev. AÂ 81, 012318 (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2013 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Liu, B. et al. (2013). A Real-Time Privacy Amplification Scheme in Quantum Key Distribution. In: Mustofa, K., Neuhold, E.J., Tjoa, A.M., Weippl, E., You, I. (eds) Information and Communication Technology. ICT-EurAsia 2013. Lecture Notes in Computer Science, vol 7804. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-36818-9_50
Download citation
DOI: https://doi.org/10.1007/978-3-642-36818-9_50
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-36817-2
Online ISBN: 978-3-642-36818-9
eBook Packages: Computer ScienceComputer Science (R0)