Abstract
Gene expression microarray data provides simultaneous activity measurement of thousands of features facilitating a potential effective and reliable cancer diagnosis. An important and challenging task in microarray analysis refers to selecting the most relevant and significant genes for data (cancer) classification. A random subspace ensemble based method is proposed to address feature selection in gene expression cancer diagnosis. The introduced Diverse Accurate Feature Selection method relies on multiple individual classifiers built based on random feature subspaces. Each feature is assigned a score computed based on the pairwise diversity among individual classifiers and the ratio between individual and ensemble accuracies. This triggers the creation of a ranked list of features for which a final classifier is applied with an increased performance using minimum possible number of genes. Experimental results focus on the problem of gene expression cancer diagnosis based on microarray datasets publicly available. Numerical results show that the proposed method is competitive with related models from literature.
Chapter PDF
Similar content being viewed by others
Keywords
References
Banerjee, M., Mitra, S., Banka, H.: Evolutionary Rough Feature Selection in Gene Expression Data. IEEE Transactions on Systems, Man, and Cybernetics-Part C: Applications and Reviews 37(4), 622–632 (2007)
Ding, C., Peng, H.: Minimum redundancy feature selection from microarray gene expression data. J. Bioinform.Comput. Biol. 3, 185–205 (2005)
Golub, T.R., Slonim, D.K., Tamayo, P., Huard, C., Gaasenbeek, M., Mesirov, J.P., Coller, H., Loh, M.L., Downing, J.R., Caligiuri, M.A., Bloomfield, C.D., Lander, E.S.: Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science 286(5439), 531–537 (1999)
Ho, T.: The random subspace method for constructing decision forests. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(8), 832–844 (1998)
Huang, H.-L., Chang, F.-L.: ESVM: Evolutionary support vector machine for automatic feature selection and classification of microarray data. BioSystems 90, 516–528 (2007)
Kuncheva, L.I., Rodriguez, J.J., Plumpton, C.O., Linden, D.E.J., Johnston, S.J.: Random Subspace Ensembles for fMRI Classification. IEEE Transactions on Medical Imaging 29(2), 531–542 (2010)
Kuncheva, L.I., Whitaker, C.J.: Measures of diversity in classifier ensembles. Machine Learning 51, 181–207 (2003)
Larrañaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I., Lozano, J.A., Armañanzas, R., Santafé, G., Pérez, A., Robles, V.: Machine learning in bioinformatics. Briefings in Bioinformatics 7(1), 86–112 (2006)
Lee, C.P., Leu, Y.: A novel hybrid feature selection method for microarray data analysis. Applied Soft Computing 11, 208–213 (2011)
Liu, H., Liu, L., Zhang, H.: Ensemble gene selection by grouping for microarray data classification. Journal of Biomedical Informatics 43, 81–87 (2010)
Lu, Y., Han, J.: Cancer classification using gene expression data. Information Systems 28(4), 243–268 (2003)
Maji, P., Paul, S.: Rough set based maximum relevance-maximum significance criterion and gene selection from microarray data. International Journal of Approximate Reasoning 52, 408–426 (2011)
Statnikov, A., Aliferis, C., Tsamardinos, I., Hardin, D., Levy, S.: (2004), http://www.gems-system.org
Statnikov, A., Aliferis, C.F., Tsamardinos, I., Hardin, D., Levy, S.: A Comprehensive Evaluation of Multicategory Classification Methods for Microarray Gene Expression Cancer Diagnosis. Bioinformatics 21(5), 631–643 (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Armano, G., Chira, C., Hatami, N. (2011). A New Gene Selection Method Based on Random Subspace Ensemble for Microarray Cancer Classification. In: Loog, M., Wessels, L., Reinders, M.J.T., de Ridder, D. (eds) Pattern Recognition in Bioinformatics. PRIB 2011. Lecture Notes in Computer Science(), vol 7036. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24855-9_17
Download citation
DOI: https://doi.org/10.1007/978-3-642-24855-9_17
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24854-2
Online ISBN: 978-3-642-24855-9
eBook Packages: Computer ScienceComputer Science (R0)