Abstract
Unlike many black-box algorithms in machine learning, prototype-based models offer an intuitive interface to given data sets, since prototypes can directly be inspected by experts in the field. Most techniques rely on Euclidean vectors such that their suitability for complex scenarios is limited. Recently, several unsupervised approaches have successfully been extended to general, possibly non-Euclidean data characterized by pairwise dissimilarities. In this paper, we shortly review a general approach to extend unsupervised prototype-based techniques to dissimilarities, and we transfer this approach to supervised prototype-based classification for general dissimilarity data. In particular, a new supervised prototype-based classification technique for dissimilarity data is proposed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Alex, N., Hasenfuss, A., Hammer, B.: Patch clustering for massive data sets. Neurocomputing 72(7-9), 1455–1469 (2009)
Bishop, C., Svensen, M., Williams, C.: The generative topographic mapping. Neural Computation 10(1), 215–234 (1998)
Cilibrasi, R., Vitanyi, M.B.: Clustering by compression. IEEE Transactions on Information Theory 51(4), 1523–1545 (2005)
Cottrell, M., Hammer, B., Hasenfuss, A., Villmann, T.: Batch and median neural gas. Neural Networks 19, 762–771 (2006)
Denecke, A., Wersing, H., Steil, J.J., Koerner, E.: Online Figure-Ground Segmentation with Adaptive Metrics in Generalized LVQ. Neurocomputing 72(7-9), 1470–1482 (2009)
Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315, 972–976 (2007)
Gisbrecht, A., Hammer, B., Schleif, F.-M., Zhu, X.: Accelerating dissimilarity clustering for biomedical data analysis. In: Proceedings of SSCI (2011)
Gisbrecht, A., Mokbel, B., Hammer, B.: Relational generative topographic mapping. Neurocomputing 74(9), 1359–1371 (2011)
Hammer, B., Hasenfuss, A.: Topographic Mapping of Large Dissimilarity Data Sets. Neural Computation 22(9), 2229–2284 (2010)
Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Networks 15(8-9), 1059–1068 (2002)
Hasenfuss, A., Hammer, B.: Relational Topographic Maps. In: Berthold, M.R., Shawe-Taylor, J., Lavrač, N. (eds.) IDA 2007. LNCS, vol. 4723, pp. 93–105. Springer, Heidelberg (2007)
Hasenfuss, A., Boerger, W., Hammer, B.: Topographic processing of very large text datasets. In: Daglie, C.H., et al. (eds.) Smart Systems Engineering: Computational Intelligence in Architecting Systes (ANNIE 2008), pp. 525–532. ASME Press (2008)
Kietzmann, T., Lange, S., Riedmiller, M.: Incremental GRLVQ: Learning Relevant Features for 3D Object Recognition. Neurocomputing 71(13-15), 2868–2879 (2008)
Kohonen, T. (ed.): Self-Organizing Maps, 3rd edn. Springer-Verlag New York, Inc., New York (2001)
Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Networks 15(8-9), 945–952 (2002)
Lundsteen, C., Phillip, J., Granum, E.: Quantitative analysis of 6985 digitized trypsin g-banded human metaphase chromosomes. Clinical Genetics 18, 355–370 (1980)
Maier, T., Klebel, S., Renner, U., Kostrzewa, M.: Fast and reliable maldi-tof ms–based microorganism identification. Nature Methods (3) (2006)
Martinetz, T.M., Berkovich, S.G., Schulten, K.J.: ’Neural-gas’ network for vector quantization and its application to time-series prediction. IEEE Trans. on Neural Networks 4(4), 558–569 (1993)
Martinetz, T., Schulten, K.: Topology representing networks. Neural Networks 7(3) (1994)
Mokbel, B., Hasenfuss, A., Hammer, B.: Graph-Based Representation of Symbolic Musical Data. In: Torsello, A., Escolano, F., Brun, L. (eds.) GbRPR 2009. LNCS, vol. 5534, pp. 42–51. Springer, Heidelberg (2009)
Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recognition 39(10), 1852–1863 (2006)
Pekalska, E., Duin, R.P.W.: The Dissimilarity Representation for Pattern Recognition. Foundations and Applications. World Scientific, Singapore (2005)
Qin, A.K., Suganthan, P.N.: A novel kernel prototype-based learning algorithm. In: Proc. of ICPR 2004, pp. 621–624 (2004)
Sato, A., Yamada, K.: Generalized learning vector quantization. In: Mozer, M.C., Touretzky, D.S., Hasselmo, M.E. (eds.) Proceedings of the 1995 Conference. Advances in Neural Information Processing Systems, vol. 8, pp. 423–429. MIT Press, Cambridge (1996)
Schneider, P., Biehl, M., Hammer, B.: Adaptive relevance matrices in learning vector quantization. Neural Computation 21(12), 3532–3561 (2009)
Schneider, P., Biehl, M., Hammer, B.: Distance Learning in Discriminative Vector Quantization. Neural Computation 21(10), 2942–2969 (2009)
Seo, S., Obermayer, K.: Soft learning vector quantization. Neural Computation 15(7), 1589–1604 (2003)
Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. Journal of Machine Learning Research 1, 211–244 (2001)
Williams, C., Seeger, M.: Using the nyström method to speed up kernel machines. In: Advances in Neural Information Processing Systems, vol. 13, pp. 682–688. MIT Press, Cambridge (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hammer, B., Mokbel, B., Schleif, FM., Zhu, X. (2011). Prototype-Based Classification of Dissimilarity Data. In: Gama, J., Bradley, E., Hollmén, J. (eds) Advances in Intelligent Data Analysis X. IDA 2011. Lecture Notes in Computer Science, vol 7014. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-24800-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-24800-9_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-24799-6
Online ISBN: 978-3-642-24800-9
eBook Packages: Computer ScienceComputer Science (R0)