Abstract
The recently introduced Datalog+/– family of ontology languages is especially useful for representing and reasoning over lightweight ontologies, and is set to play a central role in the context of query answering and information extraction for the Semantic Web. Recently, it has become apparent that it is necessary to develop a principled way to handle uncertainty in this domain. In addition to uncertainty as an inherent aspect of the Web, one must also deal with forms of uncertainty due to inconsistency and incompleteness, uncertainty resulting from automatically processing Web data, as well as uncertainty stemming from the integration of multiple heterogeneous data sources. In this paper, we take an important step in this direction by developing the first probabilistic extension of Datalog+/–. This extension uses Markov logic networks as underlying probabilistic semantics. Here, we especially focus on scalable algorithms for answering threshold queries, which correspond to the question “what is the set of all atoms that are inferred from a given probabilistic ontology with a probability of at least p?”. These queries are especially relevant to Web information extraction, since uncertain rules lead to uncertain facts, and only information with a certain minimum confidence is desired. We present two algorithms: a basic approach and one based on heuristics that is guaranteed to return sound results.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)
Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg (1981)
Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Amer. 284, 34–43 (2002)
Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive relational constraints. In: Proc. KR 2008, pp. 70–80. AAAI Press, Menlo Park (2008)
Calì, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A family of logical knowledge representation and query languages for new applications. In: Proc. LICS 2010, pp. 228–242. IEEE Computer Society, Los Alamitos (2010)
Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng. 1, 146–166 (1989)
Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: Proc. STOC 1977, pp. 77–90. ACM Press, New York (1977)
Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Proc. PODS 2008, pp. 149–158. ACM Press, New York (2008)
Drabent, W., Eiter, T., Ianni, G., Krennwallner, T., Lukasiewicz, T., Małuszyński, J.: Hybrid reasoning with rules and ontologies. In: Bry, F., Małuszyński, J. (eds.) Semantic Techniques for the Web. LNCS, vol. 5500, pp. 1–49. Springer, Heidelberg (2009)
Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)
Fink, R., Olteanu, D., Rath, S.: Providing support for full relational algebra in probabilistic databases. In: Proc. ICDE 2011. IEEE Computer Society, Los Alamitos (2011)
Heinsohn, J.: Probabilistic description logics. In: Proc. UAI 1994, pp. 311–318. Morgan Kaufmann, San Francisco (1994)
Huang, J., Antova, L., Koch, C., Olteanu, D.: MayBMS: A probabilistic database management system. In: Proc. SIGMOD 2009, pp. 1071–1074. ACM Press, New York (2009)
Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)
Koch, C., Olteanu, D., Re, C., Suciu, D.: Probabilistic Databases. Morgan-Claypool, San Francisco (2011)
Koller, D., Levy, A., Pfeffer, A.: P-Classic: A tractable probabilistic description logic. In: Proc. AAAI 1997, pp. 390–397. AAAI Press/The MIT Press (1997)
Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172, 852–883 (2008)
Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the Semantic Web. J. Web Sem. 6, 291–308 (2008)
Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM Trans. Database Syst. 4(4), 455–469 (1979)
Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language. W3C Recommendation (February 10 2004), http://www.w3.org/TR/owl-semantics/
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)
Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62, 107–136 (2006)
Yang, Y., Calmet, J.: OntoBayes: An ontology-driven uncertainty model. In: Proc. CIMCA/IAWTIC 2005, pp. 457–463. IEEE Computer Society, Los Alamitos (2005)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Gottlob, G., Lukasiewicz, T., Simari, G.I. (2011). Answering Threshold Queries in Probabilistic Datalog+/– Ontologies. In: Benferhat, S., Grant, J. (eds) Scalable Uncertainty Management. SUM 2011. Lecture Notes in Computer Science(), vol 6929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23963-2_31
Download citation
DOI: https://doi.org/10.1007/978-3-642-23963-2_31
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-23962-5
Online ISBN: 978-3-642-23963-2
eBook Packages: Computer ScienceComputer Science (R0)