Skip to main content

Answering Threshold Queries in Probabilistic Datalog+/– Ontologies

  • Conference paper
Scalable Uncertainty Management (SUM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6929))

Included in the following conference series:

  • 671 Accesses

Abstract

The recently introduced Datalog+/– family of ontology languages is especially useful for representing and reasoning over lightweight ontologies, and is set to play a central role in the context of query answering and information extraction for the Semantic Web. Recently, it has become apparent that it is necessary to develop a principled way to handle uncertainty in this domain. In addition to uncertainty as an inherent aspect of the Web, one must also deal with forms of uncertainty due to inconsistency and incompleteness, uncertainty resulting from automatically processing Web data, as well as uncertainty stemming from the integration of multiple heterogeneous data sources. In this paper, we take an important step in this direction by developing the first probabilistic extension of Datalog+/–. This extension uses Markov logic networks as underlying probabilistic semantics. Here, we especially focus on scalable algorithms for answering threshold queries, which correspond to the question “what is the set of all atoms that are inferred from a given probabilistic ontology with a probability of at least p?”. These queries are especially relevant to Web information extraction, since uncertain rules lead to uncertain facts, and only information with a certain minimum confidence is desired. We present two algorithms: a basic approach and one based on heuristics that is guaranteed to return sound results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)

    MATH  Google Scholar 

  2. Beeri, C., Vardi, M.Y.: The implication problem for data dependencies. In: Even, S., Kariv, O. (eds.) ICALP 1981. LNCS, vol. 115, pp. 73–85. Springer, Heidelberg (1981)

    Chapter  Google Scholar 

  3. Berners-Lee, T., Hendler, J., Lassila, O.: The Semantic Web. Sci. Amer. 284, 34–43 (2002)

    Article  Google Scholar 

  4. Calì, A., Gottlob, G., Kifer, M.: Taming the infinite chase: Query answering under expressive relational constraints. In: Proc. KR 2008, pp. 70–80. AAAI Press, Menlo Park (2008)

    Google Scholar 

  5. Calì, A., Gottlob, G., Lukasiewicz, T., Marnette, B., Pieris, A.: Datalog+/-: A family of logical knowledge representation and query languages for new applications. In: Proc. LICS 2010, pp. 228–242. IEEE Computer Society, Los Alamitos (2010)

    Google Scholar 

  6. Ceri, S., Gottlob, G., Tanca, L.: What you always wanted to know about Datalog (and never dared to ask). IEEE Trans. Knowl. Data Eng. 1, 146–166 (1989)

    Article  Google Scholar 

  7. Chandra, A.K., Merlin, P.M.: Optimal implementation of conjunctive queries in relational data bases. In: Proc. STOC 1977, pp. 77–90. ACM Press, New York (1977)

    Google Scholar 

  8. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Proc. PODS 2008, pp. 149–158. ACM Press, New York (2008)

    Google Scholar 

  9. Drabent, W., Eiter, T., Ianni, G., Krennwallner, T., Lukasiewicz, T., Małuszyński, J.: Hybrid reasoning with rules and ontologies. In: Bry, F., Małuszyński, J. (eds.) Semantic Techniques for the Web. LNCS, vol. 5500, pp. 1–49. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: Semantics and query answering. Theor. Comput. Sci. 336(1), 89–124 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  11. Fink, R., Olteanu, D., Rath, S.: Providing support for full relational algebra in probabilistic databases. In: Proc. ICDE 2011. IEEE Computer Society, Los Alamitos (2011)

    Google Scholar 

  12. Heinsohn, J.: Probabilistic description logics. In: Proc. UAI 1994, pp. 311–318. Morgan Kaufmann, San Francisco (1994)

    Google Scholar 

  13. Huang, J., Antova, L., Koch, C., Olteanu, D.: MayBMS: A probabilistic database management system. In: Proc. SIGMOD 2009, pp. 1071–1074. ACM Press, New York (2009)

    Google Scholar 

  14. Johnson, D.S., Klug, A.C.: Testing containment of conjunctive queries under functional and inclusion dependencies. J. Comput. Syst. Sci. 28(1), 167–189 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koch, C., Olteanu, D., Re, C., Suciu, D.: Probabilistic Databases. Morgan-Claypool, San Francisco (2011)

    MATH  Google Scholar 

  16. Koller, D., Levy, A., Pfeffer, A.: P-Classic: A tractable probabilistic description logic. In: Proc. AAAI 1997, pp. 390–397. AAAI Press/The MIT Press (1997)

    Google Scholar 

  17. Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172, 852–883 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the Semantic Web. J. Web Sem. 6, 291–308 (2008)

    Article  Google Scholar 

  19. Maier, D., Mendelzon, A.O., Sagiv, Y.: Testing implications of data dependencies. ACM Trans. Database Syst. 4(4), 455–469 (1979)

    Article  Google Scholar 

  20. Patel-Schneider, P.F., Hayes, P., Horrocks, I.: OWL Web Ontology Language. W3C Recommendation (February 10 2004), http://www.w3.org/TR/owl-semantics/

  21. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)

    MATH  Google Scholar 

  22. Richardson, M., Domingos, P.: Markov logic networks. Mach. Learn. 62, 107–136 (2006)

    Article  Google Scholar 

  23. Yang, Y., Calmet, J.: OntoBayes: An ontology-driven uncertainty model. In: Proc. CIMCA/IAWTIC 2005, pp. 457–463. IEEE Computer Society, Los Alamitos (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Gottlob, G., Lukasiewicz, T., Simari, G.I. (2011). Answering Threshold Queries in Probabilistic Datalog+/– Ontologies. In: Benferhat, S., Grant, J. (eds) Scalable Uncertainty Management. SUM 2011. Lecture Notes in Computer Science(), vol 6929. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23963-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23963-2_31

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23962-5

  • Online ISBN: 978-3-642-23963-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics