Abstract
How can micro-blogging activities on Twitter be leveraged for user modeling and personalization? In this paper we investigate this question and introduce a framework for user modeling on Twitter which enriches the semantics of Twitter messages (tweets) and identifies topics and entities (e.g. persons, events, products) mentioned in tweets. We analyze how strategies for constructing hashtag-based, entity-based or topic-based user profiles benefit from semantic enrichment and explore the temporal dynamics of those profiles. We further measure and compare the performance of the user modeling strategies in context of a personalized news recommendation system. Our results reveal how semantic enrichment enhances the variety and quality of the generated user profiles. Further, we see how the different user modeling strategies impact personalization and discover that the consideration of temporal profile patterns can improve recommendation quality.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lerman, K., Ghosh, R.: Information contagion: an empirical study of spread of news on Digg and Twitter social networks. In: Cohen, Gosling (eds.) Proc. of 4th Int. Conf. on Weblogs and Social Media (ICWSM). AAAI Press, Menlo Park (2010)
Sakaki, T., Okazaki, M., Matsuo, Y.: Earthquake shakes Twitter users: real-time event detection by social sensors. In: Rappa, et al. (eds.) Proc. of 19th Int. Conf. on World Wide Web (WWW), pp. 851–860. ACM, New York (2010)
Kwak, H., Lee, C., Park, H., Moon, S.: What is Twitter, a social network or a news media? In: Rappa, et al. (eds.) Proc. of 19th Int. Conf. on World Wide Web (WWW), pp. 591–600. ACM, New York (2010)
Weng, J., Lim, E.P., Jiang, J., He, Q.: TwitterRank: Finding topic-sensitive influential Twitterers. In: Davison, et al. (eds.) Proc. of 3rd Int. Conf. on Web Search and Web Data Mining (WSDM), pp. 261–270. ACM, New York (2010)
Dong, A., Zhang, R., Kolari, P., Bai, J., Diaz, F., Chang, Y., Zheng, Z., Zha, H.: Time is of the essence: improving recency ranking using twitter data. In: Rappa, et al. (eds.) Proc. of 19th Int. Conf. on World Wide Web (WWW), pp. 331–340. ACM, New York (2010)
Chen, J., Nairn, R., Nelson, L., Bernstein, M., Chi, E.: Short and tweet: experiments on recommending content from information streams. In: Mynatt, et al. (eds.) Proc. of 28th Int. Conf. on Human factors in Computing Systems (CHI), pp. 1185–1194. ACM, New York (2010)
Laniado, D., Mika, P.: Making sense of Twitter. In: Patel-Schneider, P.F., Pan, Y., Hitzler, P., Mika, P., Zhang, L., Pan, J.Z., Horrocks, I., Glimm, B. (eds.) ISWC 2010, Part I. LNCS, vol. 6496, pp. 470–485. Springer, Heidelberg (2010)
Huang, J., Thornton, K.M., Efthimiadis, E.N.: Conversational Tagging in Twitter. In: Chignell, M.H., Toms, E. (eds.) Proc. of 21st Conf. on Hypertext and Hypermedia (HT), pp. 173–178. ACM, New York (2010)
Koren, Y.: Collaborative filtering with temporal dynamics. In: Elder, et al. (eds.) Proc. of 15th Int. Conf. on Knowledge Discovery and Data Mining (KDD), pp. 447–456. ACM, Paris (2009)
Rowe, M., Stankovic, M., Laublet, P.: Mapping Tweets to Conference Talks: A Goldmine for Semantics. In: Passant, et al. (eds.) Workshop on Social Data on the Web (SDoW), Co-located with ISWC 2010, Shanghai, China, vol. 664, CEUR-WS.org (2010)
Abel, F., Gao, Q., Houben, G.J., Tao, K.: Semantic Enrichment of Twitter Posts for User Profile Construction on the Social Web. In: Antoniou, et al. (eds.) Extended Semantic Web Conference (ESWC), Springer, Heraklion (2011)
Abel, F., Gao, Q., Houben, G.J., Tao, K.: Supporting website: code, datasets and additional findings (2011), http://wis.ewi.tudelft.nl/umap2011/
Liu, J., Dolan, P., Pedersen, E.R.: Personalized news recommendation based on click behavior. In: Rich, et al. (eds.) Proc. of 14th Int. Conf. on Intelligent User Interfaces (IUI), pp. 31–40. ACM, New York (2010)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Abel, F., Gao, Q., Houben, GJ., Tao, K. (2011). Analyzing User Modeling on Twitter for Personalized News Recommendations. In: Konstan, J.A., Conejo, R., Marzo, J.L., Oliver, N. (eds) User Modeling, Adaption and Personalization. UMAP 2011. Lecture Notes in Computer Science, vol 6787. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22362-4_1
Download citation
DOI: https://doi.org/10.1007/978-3-642-22362-4_1
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22361-7
Online ISBN: 978-3-642-22362-4
eBook Packages: Computer ScienceComputer Science (R0)