Skip to main content

SYEDWSIM: A Web Based Simulator for Grid Workload Analysis

  • Conference paper
Software Engineering and Computer Systems (ICSECS 2011)

Abstract

Grid computing is becoming the most demanding platform for solving large-scale scientific problems. Grid scheduling is the core component of a Grid infrastructure. Grid scheduling plays a key role in the efficient and effective execution of Grid jobs. In this context, understanding the characteristics of real Grid workloads is a critical step for improving the quality of an existing Grid scheduler, and in guiding the design of new scheduling solutions. Towards this goal, in this paper we present our developed web based simulator for the statistical analysis of Grid workload traces. Our web based simulator provides a comprehensive characterization of the real workload traces. Metrics that we characterize include system utilization, job arrival rate and inter-arrival time, job size (degree of parallelism), job runtime, data correlation and Fourier analysis. Our paper provides a realistic basis for experiments in resource management and evaluations of different job scheduling algorithms in Grid computing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (2003)

    Google Scholar 

  2. Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual organizations. International J. Supercomputer Applications. 15(3) (2001)

    Google Scholar 

  3. Yu, D., Robertazzi, T.G.: Divisible load scheduling for grid computing. In: Proc. Int. Conf. on Parallel and Distributed Computing Systems (2003)

    Google Scholar 

  4. Grid Scheduling Use Cases, http://www.ogf.org/documents/GFD.64.pdf

  5. Chapin, S.J., Cirne, W., Feitelson, D.G., Jones, J.P., Leutenegger, S.T., Schwiegelshohn, U., Smith, W., Talby, D.: Benchmarks and standards for the evaluation of parallel job schedulers. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999, IPPS-WS 1999, and SPDP-WS 1999. LNCS, vol. 1659, pp. 67–89. Springer, Heidelberg (1999)

    Chapter  Google Scholar 

  6. Ernemann, C., Song, B., Yahyapour, R.: Scaling of workload traces. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 166–182. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Feitelson, D.G.: Metric and workload effects on computer systems evaluation. IEEE Computer 36(9), 18–25 (2003)

    Article  Google Scholar 

  8. Frachtenberg, E., Feitelson, D.G.: Pitfalls in parallel job scheduling evaluation. In: Feitelson, D.G., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2005. LNCS, vol. 3834, pp. 257–282. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  9. Parallel Workload Archive, http://www.cs.huji.ac.il/labs/parallel/workload/

  10. The distributed ASCI supercomputer 2 (DAS-2), http://www.cs.vu.nl/das2/

  11. Li, H.: Workload dynamics on clusters and grids, The Journal of Supercomputing 47(1), 1–20 (2009)

    Article  Google Scholar 

  12. Buyya, R.: Economic-based Distributed Resource Management and Scheduling for Grid Computing, Ph.D. Thesis, Monash University, Melbourne, Australia (2002)

    Google Scholar 

  13. Grid Scheduling Dictionary Project, http://www.mcs.anl.gov/~schopf/ggf-sched/GGF5/sched-Dict.1.pdf

  14. Baca, D.F.: Allocating modules to processors in a distributed system. IEEE Transaction on Software Engineering 15(11), 1427–1436 (1989)

    Article  Google Scholar 

  15. Li, H., Buyya, R.: Model-Driven Simulation of Grid Scheduling Strategies. In: Third IEEE International Conference on e-Science and Grid Computing (2008)

    Google Scholar 

  16. Feitelson, D.G., Rudolph, L.: Metrics and Benchmarking for Parallel Job Scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 1–24. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  17. Calzarossa, M., Serazzi, G.: Workload characterization: A survey. Proc. IEEE 81(8), 1136–1150 (1993)

    Article  Google Scholar 

  18. Feitelson, D.G.: Workload modeling for performance evaluation. In: Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 114–141. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  19. Chiang, S.-H., Vernon, M.K.: Characteristics of a large shared memory production workload. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 159–187. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  20. Feitelson, D., Nitzberg, B.: Job characteristics of a production parallel scientific workload on the NASA ames iPSC/860. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 337–360. Springer, Heidelberg (1995)

    Chapter  Google Scholar 

  21. Windisch, K., Lo, V., Moore, R., Feitelson, D., Nitzberg, B.: A comparison of workload traces from two production parallel machines. In: 6th Symp. Frontiers Massively Parallel Computing, pp. 319–326 (1996)

    Google Scholar 

  22. Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling the characteristics of rigid jobs. Journal of Parallel and Distributed Computing 63(11), 1105–1122 (2003)

    Article  MATH  Google Scholar 

  23. Jann, J., Pattnaik, P., Franke, H., Wang, F., Skovira, J.: J. Riodan.: Modeling of workload in MPPs. In: Feitelson, D.G., Rudolph, L. (eds.) Job Scheduling Strategies for Parallel Processing, pp. 95–116. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  24. Cirne, W., Berman, F.: A comprehensive model of the supercomputer workload. In: IEEE 4th Annual Workshop on Workload Characterization (2001)

    Google Scholar 

  25. JTransforms, http://sites.google.com/site/piotrwendykier/software/jtransforms

  26. JChart2D, http://jchart2d.sourceforge.net/index.shtml

  27. Commons-Math: The Apache Commons Mathematics Library, http://commons.apache.org/math/index.html

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mehmood Shah, S.N., Bin Mahmood, A.K., Oxley, A. (2011). SYEDWSIM: A Web Based Simulator for Grid Workload Analysis. In: Zain, J.M., Wan Mohd, W.M.b., El-Qawasmeh, E. (eds) Software Engineering and Computer Systems. ICSECS 2011. Communications in Computer and Information Science, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22203-0_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-22203-0_57

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22202-3

  • Online ISBN: 978-3-642-22203-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics