Abstract
Grid computing is becoming the most demanding platform for solving large-scale scientific problems. Grid scheduling is the core component of a Grid infrastructure. Grid scheduling plays a key role in the efficient and effective execution of Grid jobs. In this context, understanding the characteristics of real Grid workloads is a critical step for improving the quality of an existing Grid scheduler, and in guiding the design of new scheduling solutions. Towards this goal, in this paper we present our developed web based simulator for the statistical analysis of Grid workload traces. Our web based simulator provides a comprehensive characterization of the real workload traces. Metrics that we characterize include system utilization, job arrival rate and inter-arrival time, job size (degree of parallelism), job runtime, data correlation and Fourier analysis. Our paper provides a realistic basis for experiments in resource management and evaluations of different job scheduling algorithms in Grid computing.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Foster, I., Kesselman, C.: The Grid: Blueprint for a New Computing Infrastructure. Morgan Kaufmann, San Francisco (2003)
Foster, I., Kesselman, C., Tuecke, S.: The anatomy of the grid: Enabling scalable virtual organizations. International J. Supercomputer Applications. 15(3) (2001)
Yu, D., Robertazzi, T.G.: Divisible load scheduling for grid computing. In: Proc. Int. Conf. on Parallel and Distributed Computing Systems (2003)
Grid Scheduling Use Cases, http://www.ogf.org/documents/GFD.64.pdf
Chapin, S.J., Cirne, W., Feitelson, D.G., Jones, J.P., Leutenegger, S.T., Schwiegelshohn, U., Smith, W., Talby, D.: Benchmarks and standards for the evaluation of parallel job schedulers. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 1999, IPPS-WS 1999, and SPDP-WS 1999. LNCS, vol. 1659, pp. 67–89. Springer, Heidelberg (1999)
Ernemann, C., Song, B., Yahyapour, R.: Scaling of workload traces. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2003. LNCS, vol. 2862, pp. 166–182. Springer, Heidelberg (2003)
Feitelson, D.G.: Metric and workload effects on computer systems evaluation. IEEE Computer 36(9), 18–25 (2003)
Frachtenberg, E., Feitelson, D.G.: Pitfalls in parallel job scheduling evaluation. In: Feitelson, D.G., Frachtenberg, E., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2005. LNCS, vol. 3834, pp. 257–282. Springer, Heidelberg (2005)
Parallel Workload Archive, http://www.cs.huji.ac.il/labs/parallel/workload/
The distributed ASCI supercomputer 2 (DAS-2), http://www.cs.vu.nl/das2/
Li, H.: Workload dynamics on clusters and grids, The Journal of Supercomputing 47(1), 1–20 (2009)
Buyya, R.: Economic-based Distributed Resource Management and Scheduling for Grid Computing, Ph.D. Thesis, Monash University, Melbourne, Australia (2002)
Grid Scheduling Dictionary Project, http://www.mcs.anl.gov/~schopf/ggf-sched/GGF5/sched-Dict.1.pdf
Baca, D.F.: Allocating modules to processors in a distributed system. IEEE Transaction on Software Engineering 15(11), 1427–1436 (1989)
Li, H., Buyya, R.: Model-Driven Simulation of Grid Scheduling Strategies. In: Third IEEE International Conference on e-Science and Grid Computing (2008)
Feitelson, D.G., Rudolph, L.: Metrics and Benchmarking for Parallel Job Scheduling. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1998, SPDP-WS 1998, and JSSPP 1998. LNCS, vol. 1459, pp. 1–24. Springer, Heidelberg (1998)
Calzarossa, M., Serazzi, G.: Workload characterization: A survey. Proc. IEEE 81(8), 1136–1150 (1993)
Feitelson, D.G.: Workload modeling for performance evaluation. In: Calzarossa, M.C., Tucci, S. (eds.) Performance 2002. LNCS, vol. 2459, pp. 114–141. Springer, Heidelberg (2002)
Chiang, S.-H., Vernon, M.K.: Characteristics of a large shared memory production workload. In: Feitelson, D.G., Rudolph, L. (eds.) JSSPP 2001. LNCS, vol. 2221, pp. 159–187. Springer, Heidelberg (2001)
Feitelson, D., Nitzberg, B.: Job characteristics of a production parallel scientific workload on the NASA ames iPSC/860. In: Feitelson, D.G., Rudolph, L. (eds.) IPPS-WS 1995 and JSSPP 1995. LNCS, vol. 949, pp. 337–360. Springer, Heidelberg (1995)
Windisch, K., Lo, V., Moore, R., Feitelson, D., Nitzberg, B.: A comparison of workload traces from two production parallel machines. In: 6th Symp. Frontiers Massively Parallel Computing, pp. 319–326 (1996)
Lublin, U., Feitelson, D.G.: The workload on parallel supercomputers: modeling the characteristics of rigid jobs. Journal of Parallel and Distributed Computing 63(11), 1105–1122 (2003)
Jann, J., Pattnaik, P., Franke, H., Wang, F., Skovira, J.: J. Riodan.: Modeling of workload in MPPs. In: Feitelson, D.G., Rudolph, L. (eds.) Job Scheduling Strategies for Parallel Processing, pp. 95–116. Springer, Heidelberg (1997)
Cirne, W., Berman, F.: A comprehensive model of the supercomputer workload. In: IEEE 4th Annual Workshop on Workload Characterization (2001)
JTransforms, http://sites.google.com/site/piotrwendykier/software/jtransforms
Commons-Math: The Apache Commons Mathematics Library, http://commons.apache.org/math/index.html
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2011 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mehmood Shah, S.N., Bin Mahmood, A.K., Oxley, A. (2011). SYEDWSIM: A Web Based Simulator for Grid Workload Analysis. In: Zain, J.M., Wan Mohd, W.M.b., El-Qawasmeh, E. (eds) Software Engineering and Computer Systems. ICSECS 2011. Communications in Computer and Information Science, vol 181. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-22203-0_57
Download citation
DOI: https://doi.org/10.1007/978-3-642-22203-0_57
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-22202-3
Online ISBN: 978-3-642-22203-0
eBook Packages: Computer ScienceComputer Science (R0)