Abstract
The chief purpose of research in optimisation is to understand how to design (or choose) the most suitable algorithm for a given distribution of problem instances. Ideally, when an algorithm is developed for specific problems, the boundaries of its performance should be clear, and we expect estimates of reasonably good performance within and (at least modestly) outside its ‘seen’ instance distribution. However, we show that these ideals are highly over-optimistic, and suggest that standard algorithm-choice scenarios will rarely lead to the best algorithm for individual instances in the space of interest. We do this by examining algorithm ‘footprints’, indicating how performance generalises in instance space. We find much evidence that typical ways of choosing the ‘best’ algorithm, via tests over a distribution of instances, are seriously flawed. Also, understanding how footprints in instance spaces vary between algorithms and across instance space dimensions, may lead to a future platform for wiser algorithm-choice decisions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hoos, H.H., Stutzle, T.: Stochastic Local Search Foundations & Applications. Morgan Kaufmann, San Francisco (2005)
Hutter, F., Hamadi, Y., Leyton-Brown, K., Hoos, H.H.: Performance prediction and automated tuning [...]. In: CP 2006, pp. 213–228 (2006)
Hutter, F., Hoos, H.H., Stutzle, T.: Automatic algorithm configuration based on local search. In: Proc. National Conf. on AI, vol. 2, pp. 1152–1157. MIT Press, Cambridge (2007)
Hutter, F., Hoos, H.H., Leyton-Brown, K., Stutzle, T.: ParamILS: An Automatic Algorithm Configuration Framework. JAIR 36, 267–306 (2009)
Gratch, J., Chien, S.A.: Adaptive problem-solving for large-scale scheduling problems: A case study. JAIR 4, 365–396 (1996)
Minton, S.: Automatically configuring constraint satisfaction programs: A case study. Constraints 1(1), 1–40 (1996)
Johnson, D.S.: A theoretician guide to the experimental analysis of algorithms. In: Data Structures, Near Neighbor Searches and Methodology: Fifth and Sixth DIMACS Implementation Challenges, pp. 215–250. AMS, Providence (2002)
Birattari, M.: The Problem of Tuning Metaheuristics as Seen from a Machine Learning Perspective. PhD thesis, ULB, Belgium (2004)
Bartz-Beielstein, T., Lasarczyk, C., Preuss, M.: Sequential parameter optimization. In: IEEE CEC 2005, pp. 773–780 (2005)
Nannen, V., Eiben, A.E.: A Method for Parameter Calibration and Relevance Estimation in Evolutionary Algorithms. In: GECCO, pp. 183–190. ACM, New York (2006)
Nannen, V., Eiben, A.E.: Relevance Estimation and Value Calibration of Evolutionary Algorithm Parameters. In: IJCAI 1997, pp. 975–980 (1997)
Horvitz, E., Ruan, Y., Gomes, C.P., Kautz, H., Selman, B., Chickering, D.M.: A Bayesian approach [...]. In: UAI 2001, pp. 235–244. Morgan Kaufmann, San Francisco (2001)
Patterson, D.J., Kautz, H.: Auto-WalkSAT: a self-tuning implementation of WalkSAT. In: Electronic Notes in Discrete Mathematics (ENDM), vol. 9 (2001)
Carchrae, T., Beck, J.C.: Applying machine learning to low-knowledge control of optimization algorithms. Computational Intelligence 21(4), 372–387 (2005)
Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla: portfolio-based algorithm selection for SAT. JAIR 32, 565–606 (2008)
Preuss, M.: Adaptability of ALgorithms for Real-Valued Parameter Optimization. In: Evoworkshops 2009. LNCS, pp. 665–674. Springer, Heidelberg (2009)
Smith-Miles, K., James, R.J., Giffin, J., Tu, Y.: Understanding the Relationship between (Structure and Performance). In: Proc. LION (2009)
Edgington, E.S.: Randomization Tests. Marcel Dekker AG, USA, 147 p. (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Corne, D.W., Reynolds, A.P. (2010). Optimisation and Generalisation: Footprints in Instance Space. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_3
Download citation
DOI: https://doi.org/10.1007/978-3-642-15844-5_3
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15843-8
Online ISBN: 978-3-642-15844-5
eBook Packages: Computer ScienceComputer Science (R0)