Abstract
This paper presents an archive maintenance scheme that can be used within an evaluation scheme for finding robust optima when dealing with expensive objective functions. This archive maintenance scheme aims to select the additional sampling points such that locally well-spread distributions of archive points will be generated. By doing so, the archive will contain better predictive information about the robustness of candidate solutions. Experiments on 10D test problems show that this scheme can be used for accurate local search for robust solutions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Beyer, H.-G.: Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practice. Computer Methods in Applied Mechanics and Engineering 186(2-4), 239–267 (2000)
Beyer, H.-G., Sendhoff, B.: Evolution strategies for robust optimization. In: IEEE Congress on Evolutionary Computation, pp. 1346–1353 (2006)
Branke, J.: Creating robust solutions by means of evolutionary algorithms. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 119–128. Springer, Heidelberg (1998)
Branke, J.: Reducing the sampling variance when searching for robust solutions. In: Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 235–242 (2001)
Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001)
McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (2000)
Ong, Y.-S., Nair, P.B., Lum, K.Y.: Max-min surrogate-assisted evolutionary algorithm for robust design. IEEE Transactions on Evolutionary Computation 10(4), 392–404 (2006)
Paenke, I., Branke, J., Jin, Y.: Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation. IEEE Transactions on Evolutionary Computation 10(4), 405–420 (2006)
Tsutsui, S.: A comparative study on the effects of adding perturbations to phenotypic parameters in genetic algorithms with a robust solution searching scheme. In: IEEE Systems, Man, and Cybernetics Conference (SMC 1999), pp. 585–591 (1999)
Tsutsui, S., Ghosh, A.: Genetic algorithms with a robust solution searching scheme. IEEE Transactions on Evolutionary Computation 1(3), 201–208 (1997)
Tsutsui, S., Ghosh, A.: Effects of adding perturbations to phenotypic parameters in genetic algorithms for searching robust solutions. In: Advances in evolutionary computing: theory and applications, pp. 351–365 (2003)
Wiesmann, D., Hammel, U., Bäck, T.: Robust design of multilayer optical coatings by means of evolutionary algorithms. IEEE Transactions on Evolutionary Computation 2, 162–167 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Kruisselbrink, J., Emmerich, M., Bäck, T. (2010). An Archive Maintenance Scheme for Finding Robust Solutions. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_22
Download citation
DOI: https://doi.org/10.1007/978-3-642-15844-5_22
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15843-8
Online ISBN: 978-3-642-15844-5
eBook Packages: Computer ScienceComputer Science (R0)