Skip to main content

An Archive Maintenance Scheme for Finding Robust Solutions

  • Conference paper
Parallel Problem Solving from Nature, PPSN XI (PPSN 2010)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6238))

Included in the following conference series:

Abstract

This paper presents an archive maintenance scheme that can be used within an evaluation scheme for finding robust optima when dealing with expensive objective functions. This archive maintenance scheme aims to select the additional sampling points such that locally well-spread distributions of archive points will be generated. By doing so, the archive will contain better predictive information about the robustness of candidate solutions. Experiments on 10D test problems show that this scheme can be used for accurate local search for robust solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Beyer, H.-G.: Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practice. Computer Methods in Applied Mechanics and Engineering 186(2-4), 239–267 (2000)

    Article  MATH  Google Scholar 

  2. Beyer, H.-G., Sendhoff, B.: Evolution strategies for robust optimization. In: IEEE Congress on Evolutionary Computation, pp. 1346–1353 (2006)

    Google Scholar 

  3. Branke, J.: Creating robust solutions by means of evolutionary algorithms. In: Eiben, A.E., Bäck, T., Schoenauer, M., Schwefel, H.-P. (eds.) PPSN 1998. LNCS, vol. 1498, pp. 119–128. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  4. Branke, J.: Reducing the sampling variance when searching for robust solutions. In: Genetic and Evolutionary Computation Conference (GECCO 2001), pp. 235–242 (2001)

    Google Scholar 

  5. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evolutionary Computation 9(2), 159–195 (2001)

    Article  Google Scholar 

  6. McKay, M.D., Beckman, R.J., Conover, W.J.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 42(1), 55–61 (2000)

    Article  Google Scholar 

  7. Ong, Y.-S., Nair, P.B., Lum, K.Y.: Max-min surrogate-assisted evolutionary algorithm for robust design. IEEE Transactions on Evolutionary Computation 10(4), 392–404 (2006)

    Article  Google Scholar 

  8. Paenke, I., Branke, J., Jin, Y.: Efficient search for robust solutions by means of evolutionary algorithms and fitness approximation. IEEE Transactions on Evolutionary Computation 10(4), 405–420 (2006)

    Article  Google Scholar 

  9. Tsutsui, S.: A comparative study on the effects of adding perturbations to phenotypic parameters in genetic algorithms with a robust solution searching scheme. In: IEEE Systems, Man, and Cybernetics Conference (SMC 1999), pp. 585–591 (1999)

    Google Scholar 

  10. Tsutsui, S., Ghosh, A.: Genetic algorithms with a robust solution searching scheme. IEEE Transactions on Evolutionary Computation 1(3), 201–208 (1997)

    Article  Google Scholar 

  11. Tsutsui, S., Ghosh, A.: Effects of adding perturbations to phenotypic parameters in genetic algorithms for searching robust solutions. In: Advances in evolutionary computing: theory and applications, pp. 351–365 (2003)

    Google Scholar 

  12. Wiesmann, D., Hammel, U., Bäck, T.: Robust design of multilayer optical coatings by means of evolutionary algorithms. IEEE Transactions on Evolutionary Computation 2, 162–167 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kruisselbrink, J., Emmerich, M., Bäck, T. (2010). An Archive Maintenance Scheme for Finding Robust Solutions. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds) Parallel Problem Solving from Nature, PPSN XI. PPSN 2010. Lecture Notes in Computer Science, vol 6238. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15844-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15844-5_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15843-8

  • Online ISBN: 978-3-642-15844-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics