Abstract
Knowledge merging is the process of synthesizing multiple knowledge models into a common model. Available methods concentrate on resolving conflicting knowledge. While, we argue that besides the inconsistency, some other attributes may also affect the resulting knowledge model. This paper proposes an approach for knowledge merging under multiple attributes, i.e. Consistency and Relevance. This approach introduces the discrepancy between two knowledge models and defines different discrepancy functions for each attribute. An integrated distance function is used for assessing the candidate knowledge models.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lin, J., Mendelzon, A.O.: Merging databases under constraints. Int. J. of Cooperative Information Systems 7(1), 55–76 (1998)
Knight, K.: Measuring inconsistency. Journal of Philosophical Logic 31(1), 77–98 (2002)
Grant, J., Hunter, A.: Measuring inconsistency in knowledgebases. Journal of Intelligent Information Systems 27, 159–184 (2006)
Hunter, A., Konieczny, S.: Approaches to measuring inconsistent information. In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 191–236. Springer, Heidelberg (2005)
Mu, K., Jin, Z., Lu, R., Liu, W.: Measuring inconsistency in requirements specifications. In: Godo, L. (ed.) ECSQARU 2005. LNCS (LNAI), vol. 3571, pp. 440–451. Springer, Heidelberg (2005)
Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent sets. In: Priciples of knowledge representation and reasoning: Proceedings of the eleventh international conference (KR 2008), pp. 358–366 (2008)
Grant, J., Hunter, A.: Analysing inconsistent first-order knowledge bases. Artificial Intelligence 172, 1064–1093 (2008)
Hunter, A., Konieczny, S.: Approaches to measuring inconsistent information. In: Bertossi, L., Hunter, A., Schaub, T. (eds.) Inconsistency Tolerance. LNCS, vol. 3300, pp. 189–234. Springer, Heidelberg (2005)
Reiter, R.: A theory of diagnosis from first priniciples. Artificial Intelligence 32, 57–95 (1987)
Benferhat, S., Kaci, S., Le Berre, D., Williams, M.A.: Weakening conflicting information for iterated revision and knowledge integration. In: IJCAI, pp. 109–118 (2001)
Meyer, T., Lee, K., Booth, R.: Knowledge integration for description logics. In: AAAI, pp. 645–650 (2005)
Lin, J.: Integration of weighted knowledge bases. Artif. Intell. 83(2), 363–378 (1996)
Delgrande, J., Dubois, D., Lang, J.: Iterated revision as prioritized merging. In: KR 2006, pp. 210–220 (2006)
Konieczny, S., Pino Perez, R.: Merging information under constraints: a logical framework. Journal of Logic and Computation 12(5), 773–808 (2002)
Ma, Z.M.: Propositional knowledge bases merging. In: I-KNOW (2005)
Gregoire, E., Konieczny, S.: Logic-based approaches to information fusion. Information Fusion 7, 4–18 (2006)
Hunter, A.: Merging potentially inconsistent items of structured text. Data and Knowledge Engineering 34, 305–332 (2000)
Gabbay, D.M., Pigozzi, G., Rodrigues, O.: Belief revision, belief merging and voting. In: The Seventh Conference on Logic and the Foundations of Games and Decision Theory, University of Liverpool, pp. 71–78 (2006)
Gabrilovich, E., Markovitch, S.: Computing semantic relatedness using wikipedia-based explicit semantic analysis. In: Proceedings of The 20th International Joint Conference on Artificial Intelligence (IJCAI), Hyderabad, India (January 2007)
Milne, D.: Computing semantic relatedness using wikipedia link structure. In: NZ CSRSC (2007)
Landauer, T.K., Foltz, P.W., Laham, D.: Introduction to latent semantic analysis. Discourse Processes 25, 259–284 (1998)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wei, B., Jin, Z., Zowghi, D. (2010). Knowledge Merging under Multiple Attributes. In: Bi, Y., Williams, MA. (eds) Knowledge Science, Engineering and Management. KSEM 2010. Lecture Notes in Computer Science(), vol 6291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15280-1_51
Download citation
DOI: https://doi.org/10.1007/978-3-642-15280-1_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15279-5
Online ISBN: 978-3-642-15280-1
eBook Packages: Computer ScienceComputer Science (R0)