Abstract
The management of business processes is receiving much attention, since it can support significant efficiency improvements in organizations. One of the most interesting problems is the representation of process models in a language that allows to perform reasoning on it.
Various knowledge-based languages have been lately developed for such a task and showed to have a high potential due to the advantages of these languages with respect to traditional graph-based notations.
In this work we present an approach for the automatic discovery of knolwedge-based process models expressed by means of a probabilistic logic, starting from a set of process execution traces. The approach first uses the DPML (Declarative Process Model Learner) algorithm [16] to extract a set of integrity constraints from a collection of traces. Then, the learned constraints are translated into Markov Logic formulas and the weights of each formula are tuned using the Alchemy system. The resulting theory allows to perform probabilistic classification of traces. We tested the proposed approach on a real database of university students’ careers. The experiments show that the combination of DPML and Alchemy achieves better results than DPML alone.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data Knowledge Engineering 47(2), 237–267 (2003)
van der Aalst, W.M.P., Pesic, M.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)
van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)
van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)
Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)
Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: The SCIFF framework. ACM Transactions on Computational Logic 9(4) (2008)
Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An abductive interpretation for open societies. In: Cappelli, A., Turini, F. (eds.) AI*IA 2003. LNCS, vol. 2829, Springer, Heidelberg (2003)
Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009)
Chesani, F., Mello, P., Montali, M., Storari, S.: Towards a decserflow declarative semantics based on computational logic. Technical Report DEIS-LIA-07-002, DEIS, Bologna, Italy (2007)
Clark, K.L.: Negation as failure. In: Logic and Databases. Plenum Press, New York (1978)
De Raedt, L., Van Laer, W.: Inductive constraint logic. In: Zeugmann, T., Shinohara, T., Jantke, K.P. (eds.) ALT 1995. LNCS (LNAI), vol. 997, Springer, Heidelberg (1995)
Domingos, P., Kok, S., Lowd, D., Poon, H., Richardson, M., Singla, P.: Markov logic. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 92–117. Springer, Heidelberg (2008)
Georgakopoulos, D., Hornick, M.F., Sheth, A.P.: An overview of workflow management: From process modeling to workflow automation infrastructure. Distributed and Parallel Databases 3(2), 119–153 (1995)
Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models by clustering log traces. IEEE Transactions on Knowledge and Data Engineering 18(8), 1010–1027 (2006)
Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative logic-based models from labeled traces. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007)
Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming to process mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008)
Provost, F.J., Fawcett, T.: Robust classification for imprecise environments. Machine Learning 42(3), 203–231 (2001)
Raedt, L.D., Dehaspe, L.: Clausal discovery. Machine Learning 26(2-3), 99–146 (1997)
Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2), 107–136 (2006)
Silva, R., Zhang, J., Shanahan, J.G.: Probabilistic workflow mining. In: Grossman, R., Bayardo, R.J., Bennett, K.P. (eds.) Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 275–284. ACM, New York (2005)
Singla, P., Domingos, P.: Lifted first-order belief propagation. In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, pp. 1094–1099. AAAI Press, Menlo Park (2008)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Bellodi, E., Riguzzi, F., Lamma, E. (2010). Probabilistic Declarative Process Mining. In: Bi, Y., Williams, MA. (eds) Knowledge Science, Engineering and Management. KSEM 2010. Lecture Notes in Computer Science(), vol 6291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15280-1_28
Download citation
DOI: https://doi.org/10.1007/978-3-642-15280-1_28
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-15279-5
Online ISBN: 978-3-642-15280-1
eBook Packages: Computer ScienceComputer Science (R0)