Skip to main content

Probabilistic Declarative Process Mining

  • Conference paper
Knowledge Science, Engineering and Management (KSEM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6291))

  • 1582 Accesses

Abstract

The management of business processes is receiving much attention, since it can support significant efficiency improvements in organizations. One of the most interesting problems is the representation of process models in a language that allows to perform reasoning on it.

Various knowledge-based languages have been lately developed for such a task and showed to have a high potential due to the advantages of these languages with respect to traditional graph-based notations.

In this work we present an approach for the automatic discovery of knolwedge-based process models expressed by means of a probabilistic logic, starting from a set of process execution traces. The approach first uses the DPML (Declarative Process Model Learner) algorithm [16] to extract a set of integrity constraints from a collection of traces. Then, the learned constraints are translated into Markov Logic formulas and the weights of each formula are tuned using the Alchemy system. The resulting theory allows to perform probabilistic classification of traces. We tested the proposed approach on a real database of university students’ careers. The experiments show that the combination of DPML and Alchemy achieves better results than DPML alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. van der Aalst, W.M.P., van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.M.M.: Workflow mining: A survey of issues and approaches. Data Knowledge Engineering 47(2), 237–267 (2003)

    Article  Google Scholar 

  2. van der Aalst, W.M.P., Pesic, M.: A declarative approach for flexible business processes management. In: Eder, J., Dustdar, S. (eds.) BPM Workshops 2006. LNCS, vol. 4103, pp. 169–180. Springer, Heidelberg (2006)

    Google Scholar 

  3. van der Aalst, W.M.P., Pesic, M.: DecSerFlow: Towards a truly declarative service flow language. In: Bravetti, M., Núñez, M., Zavattaro, G. (eds.) WS-FM 2006. LNCS, vol. 4184, pp. 1–23. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. van der Aalst, W.M.P., Weijters, T., Maruster, L.: Workflow mining: Discovering process models from event logs. IEEE Transactions on Knowledge and Data Engineering 16(9), 1128–1142 (2004)

    Article  Google Scholar 

  5. Agrawal, R., Gunopulos, D., Leymann, F.: Mining process models from workflow logs. In: Schek, H.-J., Saltor, F., Ramos, I., Alonso, G. (eds.) EDBT 1998. LNCS, vol. 1377, pp. 469–483. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  6. Alberti, M., Chesani, F., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: Verifiable agent interaction in abductive logic programming: The SCIFF framework. ACM Transactions on Computational Logic 9(4) (2008)

    Google Scholar 

  7. Alberti, M., Gavanelli, M., Lamma, E., Mello, P., Torroni, P.: An abductive interpretation for open societies. In: Cappelli, A., Turini, F. (eds.) AI*IA 2003. LNCS, vol. 2829, Springer, Heidelberg (2003)

    Google Scholar 

  8. Chesani, F., Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Exploiting inductive logic programming techniques for declarative process mining. In: Jensen, K., van der Aalst, W.M.P. (eds.) Transactions on Petri Nets. LNCS, vol. 5460, pp. 278–295. Springer, Heidelberg (2009)

    Google Scholar 

  9. Chesani, F., Mello, P., Montali, M., Storari, S.: Towards a decserflow declarative semantics based on computational logic. Technical Report DEIS-LIA-07-002, DEIS, Bologna, Italy (2007)

    Google Scholar 

  10. Clark, K.L.: Negation as failure. In: Logic and Databases. Plenum Press, New York (1978)

    Google Scholar 

  11. De Raedt, L., Van Laer, W.: Inductive constraint logic. In: Zeugmann, T., Shinohara, T., Jantke, K.P. (eds.) ALT 1995. LNCS (LNAI), vol. 997, Springer, Heidelberg (1995)

    Google Scholar 

  12. Domingos, P., Kok, S., Lowd, D., Poon, H., Richardson, M., Singla, P.: Markov logic. In: De Raedt, L., Frasconi, P., Kersting, K., Muggleton, S.H. (eds.) Probabilistic Inductive Logic Programming. LNCS (LNAI), vol. 4911, pp. 92–117. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Georgakopoulos, D., Hornick, M.F., Sheth, A.P.: An overview of workflow management: From process modeling to workflow automation infrastructure. Distributed and Parallel Databases 3(2), 119–153 (1995)

    Article  Google Scholar 

  14. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models by clustering log traces. IEEE Transactions on Knowledge and Data Engineering 18(8), 1010–1027 (2006)

    Article  Google Scholar 

  15. Lamma, E., Mello, P., Montali, M., Riguzzi, F., Storari, S.: Inducing declarative logic-based models from labeled traces. In: Alonso, G., Dadam, P., Rosemann, M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 344–359. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Lamma, E., Mello, P., Riguzzi, F., Storari, S.: Applying inductive logic programming to process mining. In: Blockeel, H., Ramon, J., Shavlik, J., Tadepalli, P. (eds.) ILP 2007. LNCS (LNAI), vol. 4894, pp. 132–146. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  17. Provost, F.J., Fawcett, T.: Robust classification for imprecise environments. Machine Learning 42(3), 203–231 (2001)

    Article  MATH  Google Scholar 

  18. Raedt, L.D., Dehaspe, L.: Clausal discovery. Machine Learning 26(2-3), 99–146 (1997)

    Article  MATH  Google Scholar 

  19. Richardson, M., Domingos, P.: Markov logic networks. Machine Learning 62(1-2), 107–136 (2006)

    Article  Google Scholar 

  20. Silva, R., Zhang, J., Shanahan, J.G.: Probabilistic workflow mining. In: Grossman, R., Bayardo, R.J., Bennett, K.P. (eds.) Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 275–284. ACM, New York (2005)

    Chapter  Google Scholar 

  21. Singla, P., Domingos, P.: Lifted first-order belief propagation. In: Proceedings of the Twenty-Third AAAI Conference on Artificial Intelligence, AAAI 2008, pp. 1094–1099. AAAI Press, Menlo Park (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bellodi, E., Riguzzi, F., Lamma, E. (2010). Probabilistic Declarative Process Mining. In: Bi, Y., Williams, MA. (eds) Knowledge Science, Engineering and Management. KSEM 2010. Lecture Notes in Computer Science(), vol 6291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15280-1_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15280-1_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15279-5

  • Online ISBN: 978-3-642-15280-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics