Skip to main content

Automatic BI-RADS Description of Mammographic Masses

  • Conference paper
Digital Mammography (IWDM 2010)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6136))

Included in the following conference series:

Abstract

This paper presents a CBIR (Content Based Information Retrieval) framework for automatic description of mammographic masses according to the well known BI-RADS lexicon. Unlike other approaches, we do not attempt to segment masses but instead, we describe the regions an expert selects, after the series of rules defined in the BI-RADS lexicon. The content based retrieval strategy searches similar regions by automatically computing the Mahalanobis distance of feature vectors that describe main shape and texture characteristics of the selected regions. A description of a test region is based on the BI-RADS description associated to the retrieved regions. The strategy was assessed in a set of 444 masses with different shapes and margins. Suggested descriptions were compared with a ground truth already provided by the data base, showing a precision rate of 82.6% for the retrieval task and a sensitivity rate of 80% for the annotation task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Scottish Intercollegiate Guidelines Network : Management of breast cancer in women. A national clinical guideline 84, 1–3 (2005)

    Google Scholar 

  2. American Cancer Society : American cancer statistics (2007); Revisado el 2 Septiembre (2008)

    Google Scholar 

  3. Verma, K., Zakos, J.: A computer-aided diagnosis system for digital mammograms based on fuzzy-neural and feature extraction techniques. IEEE Transactions on Information Technology in Biomedicine 16, 219–223 (2002)

    Google Scholar 

  4. Buseman, S., Mouchawar, J., Calonge, N., Byers, T.: Mammography screening matters for young women with breast carcinoma. Cancer 97, 352–358 (2003)

    Article  Google Scholar 

  5. Bird, R., Wallace, T., Yankaskas, B.: Analysis of cancers missed at screening mammography. Radiology 178, 234–247 (1992)

    Google Scholar 

  6. American College of Radiology (ACR): Illustrated Breast Imaging Reporting and Data System (BI-RADS). ACR (1998)

    Google Scholar 

  7. Marias, K., Linguraru, M.G., Ballester, M.G., Petroudi, S., Tsiknakis, M., Sir, M.: Automatic labelling and bi-rads characterisation of mammogram densities. In: Proceedings of the IEEE Engineering in Medicine and Biology (2005)

    Google Scholar 

  8. Petroudi, S., Kadir, T., Brady, M.: Automatic classification of mammographic parenchymal patterns: A statistical approach. In: IEEE International Conference on Engineering in Medicine and Biology Society (2003)

    Google Scholar 

  9. Bovis, K., Singh, S.: Classification of mammographic breast density using a combined classifier paradigm. In: Medical Image Understanding and Analysis (2002)

    Google Scholar 

  10. Tao, Y., Lo Shih-Chung, B., Freedman Matthew, T., Erini, M., Xuan, J.: Automatic categorization of mammographic masses using bi-rads as a guidance. In: Proceedings of SPIE, the International Society for Optical Engineering (2008)

    Google Scholar 

  11. Nishikawa, R.M.: Current status and future directions of computer-aided diagnosis in mammography. Computerized Medical Imaging and Graphics 31, 224–235 (2007)

    Article  Google Scholar 

  12. Gur, D., Stalder, J.S., Hardesty, L.A., Zheng, B., Sumkin, J.H., Chough, D.M., Shindel, B.E., Rockette, H.E.: Computer-aided detection performance in mammographic examination of masses: assessment. Radiology 233, 418–423 (2004)

    Article  Google Scholar 

  13. Tao, Y., Lo, S.B., Freedman, M.T., Xuan, J.: A preliminary study of content-based mammographic masses retrieval. In: Proc. SPIE, vol. 6514, p. 65141Z (2007)

    Google Scholar 

  14. Zheng, B., Mello-Thoms, C., Wang, X.H., Abrams, G.S., Sumkin, J.H., Chough, D.M., Marie, G.A., Lu, A., Gur, D.: Interactive computer aided diagnosis of breast masses: Computerized selection of visually similar image sets from a reference library. Academical Radiology 14, 917–927 (2007)

    Article  Google Scholar 

  15. Rosa, N.A., Felipe, J.C., Traina, A.J., Rangayyan, R.M., Azevedo-Marques, P.M.: Using relevance feedback to reduce the semantic gap in content-based image retrieval of mammographic masses. In: Conf. Proc. IEEE Med. Biol. Soc., pp. 406–409 (2008)

    Google Scholar 

  16. Rangayyana, R.M., Ayres, F.J., Desautelsa, J.E.L.: A review of computer-aided diagnosis of breast cancer: Toward the detection of subtle signs. Journal of the Franklin Institute 344, 312–348 (2007)

    Article  Google Scholar 

  17. Wee, C.Y., Paramesran, R.: On the computational aspects of zernike moments. Image and Vision Computing 25, 967–980 (2007)

    Article  Google Scholar 

  18. Amadasun, M., King, R.: Textural features corresponding to textural properties. IEEE Transactions on systems, man and Cybernetics 19, 1264–1274 (1989)

    Article  Google Scholar 

  19. Cheng, H.D., Shi, X.J., Min, R., Hu, L.M., Cai, X.P., Du, H.N.: Approaches for automated detection and classification of masses in mammograms. Pattern Recognition 39, 646–668 (2006)

    Article  Google Scholar 

  20. Petrick, N., Chan, H.P., Sahiner, B., Wei, D.: An adaptive density weighted contrast enhancement filter for mammographic breast mass detection. IEEE Trans. Med. Imaging 15(1), 59–67 (1996)

    Article  Google Scholar 

  21. Maggio, C.D.: State of the art of current modalities for the diagnosis of breast lesions. Eur. J. Nucl. Med. Mol. Imaging 31(suppl.1), S59–S69 (2004)

    Google Scholar 

  22. Teague, M.R.: Image analysis via the general theory of moments. J. Optical Soc. Am. 70, 920–930 (1980)

    Article  MathSciNet  Google Scholar 

  23. Belkasim, S., Hassan, E., Obeidi, T.: Radial zernike moment invariants. In: The Fourth Int. Conf. on Computer and Information Tech., vol. 1, pp. 790–795 (2004)

    Google Scholar 

  24. Kim, H., Kim, J.: Region-based shape descriptor invariant to rotation, scale and translation. Signal Proc.: Image Communication 16, 87–93 (2000)

    Article  Google Scholar 

  25. Hosny, K.M.: Fast computation of accurate zernike moments. J. Real-Time Image Proc. 3, 97–107 (2008)

    Article  Google Scholar 

  26. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Trans. on Inf. Theo. IT-13, 21–27 (1967)

    Article  Google Scholar 

  27. Heath, M., Bowyer, K., Kopans, D., Moore, R., Kegelmeyer, W.P.: The digital database for screening mammography. In: Yaffe, M.J. (ed.) Proceedings of the Fifth International Workshop on Digital Mammography, pp. 212–218. Medical Physics Publishing (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Narváez, F., Díaz, G., Romero, E. (2010). Automatic BI-RADS Description of Mammographic Masses. In: Martí, J., Oliver, A., Freixenet, J., Martí, R. (eds) Digital Mammography. IWDM 2010. Lecture Notes in Computer Science, vol 6136. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13666-5_91

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13666-5_91

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13665-8

  • Online ISBN: 978-3-642-13666-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics