Skip to main content

Constructive Neural Networks to Predict Breast Cancer Outcome by Using Gene Expression Profiles

  • Conference paper
Trends in Applied Intelligent Systems (IEA/AIE 2010)

Abstract

Gene expression profiling strategies have attracted considerable interest from biologist due to the potential for high throughput analysis of hundreds of thousands of gene transcripts. Methods using artifical neural networks (ANNs) were developed to identify an optimal subset of predictive gene transcripts from highly dimensional microarray data. The problematic of using a stepwise forward selection ANN method is that it needs many different parameters depending on the complexity of the problem and choosing the proper neural network architecture for a given classification problem is not a trivial problem. A novel constructive neural networks algorithm (CMantec) is applied in order to predict estrogen receptor status by using data from microarrays experiments. The obtained results show that CMantec model clearly outperforms the ANN model both in process execution time as in the final prognosis accuracy. Therefore, CMantec appears as a powerful tool to identify gene signatures that predict the ER status for a given patient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Andree, H.M.A., Barkema, G.T., Lourens, W., Taal, Vermeulen, J.C.: A comparison study of binary feedforward neural networks and digital circuits. Neural Networks 6, 785–790 (1993)

    Article  Google Scholar 

  2. Baum, E.B., Haussler, D.: What size net gives valid generalization? Neural Computation 1, 151–160 (1989)

    Article  Google Scholar 

  3. Frean, M.: The upstart algorithm: A method for constructing and training feedforward neural networks. Neural Computation 2, 198–209 (1990)

    Article  Google Scholar 

  4. Frean, M.: Thermal perceptron learning rule. Neural Computation 4, 946–957 (1992)

    Article  Google Scholar 

  5. Gómez, I., Franco, L., Jerez, J.M.: Neural Network Architecture Selection: Can function complexity help? Neural Processing Letters (in press, 2009) doi:10.1007 s11063-009-9108-2

    Google Scholar 

  6. Keibek, S.A.J., Barkema, G.T., Andree, H.M.A., Savenlie, M.H.F., Taal, A.: A fast partitioning algorithm and a comparison of binary feedforward neural networks. Europhys. Lett. 18, 555–559 (1992)

    Article  Google Scholar 

  7. Lancashire, L.J., Rees, R.C., Ball, G.R.: Identification of gene transcript signatures predictive for estrogen receptor and lymph node status using a stepwise forward selection artifical neural network modelling approach. Artificial Intelligence in Medicine 43, 99–111 (2008)

    Article  Google Scholar 

  8. Lawrence, S., Giles, C.L., Tsoi, A.: What Size Neural Network Gives Optimal Gener- alization? Convergence Properties of Backpropagation. Technical Report UMIACS-TR-96-22 and CS-TR-3617, University of Maryland (1996)

    Google Scholar 

  9. Mezard, M., Nadal, J.P.: Learning in feedforward layered networks: The tiling algorithm. J. Physics A 22, 2191–2204 (1989)

    Article  MathSciNet  Google Scholar 

  10. Nicoletti, M.C., Bertini, J.R.: An empirical evaluation of constructive neural network algorithms in classification tasks. International Journal of Innovative Computing and Applications 1, 2–13 (2007)

    Article  Google Scholar 

  11. Parekh, R., Yang, J., Honavar, V.: Constructive Neural-Network Learning Algorithms for Pattern Classification. IEEE Transactions on Neural Networks 11, 436–451 (2000)

    Article  Google Scholar 

  12. García-Pedrajas, N., Ortiz-Boyer, D.: A cooperative constructive method for neural networks for pattern recognition. Pattern Recognition 40, 80–98 (2007)

    Article  MATH  Google Scholar 

  13. Pellagatti, A., Vetrie, D., Langford, C.F., Gama, S., Eagleton, H., Wainscoat, J.S., Boultwood, J.: Gene Expression Profiling in Polycythemia Vera Using cDNA Microarray Technology. Cancer Res. 63, 3940–3944 (2003)

    Google Scholar 

  14. Linder, R., Richards, T., Wagner, M.: Microarray data classified by artificial neural networks. Methods Mol. Biol. 382, 345–372 (2007)

    Article  Google Scholar 

  15. Rosenhlatt, F.: The perceptron: A probabilistic model for information storage and organization in the brain. Psychological Review 65, 386–408 (1959)

    Article  Google Scholar 

  16. Rumelhart, D., Hinton, G., Williams, R.: Learning internal representations by backpropagating errors. In: Rumelhart, D., Mc-Clelland, J. (eds.) Parallel distributed processing: Explorations in the microstructure of cognition, vol. 1, pp. 318–362. MIT Press, Cambridge (1986)

    Google Scholar 

  17. Kirkpatrick, S., Gelatt Jr., C.D., Vecchi, M.P.: Optimization by Simulated Annealing. Science 220, 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  18. Subirats, J.L., Franco, L., Gòmez, I., Jerez, J.M.: Computational capabilities of feedforward neural networks: the role of the output function. In: Proceedings of the XII CAEPIA’07, vol. II, pp. 231–238 (2008) ISBN: 978-84-611-8848-2

    Google Scholar 

  19. Subirats, J.L., Jerez, J.M., Franco, L.: A New Decomposition Algorithm for Threshold Synthesis and Generalization of Boolean Functions. IEEE Transactions on Circuits and Systems I 55, 3188–3196 (2008)

    Article  Google Scholar 

  20. Subirats, J.L., Franco, L., Molina, I., Jerez, J.M.: Competition and Stable Learning for Growing Compact Neural Architectures with Good Generalization Abilities: The C-Mantec Algorithm (2009) (sent for publication)

    Google Scholar 

  21. Utgoff, P.E., Stracuzzi, D.J.: Many-Layered Learning. Neural Computation 14, 2497–2539 (2002)

    Article  MATH  Google Scholar 

  22. Wei Jun, S., Greer Braden, T., Frank, W., Steinberg Seth, M., Chang-Gue, S., et al.: Prediction of Clinical Outcome Using Gene Expression Profiling and Artificial Neural Networks for Patients with Neuroblastom. Cancer Res. 64, 6883–6891 (2004)

    Article  Google Scholar 

  23. West, M., Blanchette, C., Dressman, H., Huang, E., Ishida, S., Spang, R., et al.: Predicting the clinical status of human breast cancer by using genes expression profiles. Proc. Natl. Acad. Sci. U.S.A. 98, 11462–11467 (2001)

    Article  Google Scholar 

  24. Xu, Y., Selaru, F.M., Yin, J., Zou, T.T., Shustova, V., Mori, Y., Sato, F., et al.: Prediction of Clinical Outcome Using Gene Expression Profiling and Artificial Neural Networks for Patients with Neuroblastom. Cancer Res. 62, 3493–3497 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Urda, D., Subirats, J.L., Franco, L., Jerez, J.M. (2010). Constructive Neural Networks to Predict Breast Cancer Outcome by Using Gene Expression Profiles. In: García-Pedrajas, N., Herrera, F., Fyfe, C., Benítez, J.M., Ali, M. (eds) Trends in Applied Intelligent Systems. IEA/AIE 2010. Lecture Notes in Computer Science(), vol 6096. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13022-9_32

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13022-9_32

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13021-2

  • Online ISBN: 978-3-642-13022-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics