Skip to main content

Robust Focal Length Estimation by Voting in Multi-view Scene Reconstruction

  • Conference paper
Computer Vision – ACCV 2009 (ACCV 2009)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 5994))

Included in the following conference series:

  • 1615 Accesses

Abstract

We propose a new robust focal length estimation method in multi-view structure from motion from unordered data sets, e.g. downloaded from the Flickr database, where jpeg-exif headers are often incorrect or missing. The method is based on a combination of RANSAC with weighted kernel voting and can use any algorithm for estimating epipolar geometry and unknown focal lengths. We demonstrate by experiments with synthetic and real data that the method produces reliable focal length estimates which are better than estimates obtained using RANSAC or kernel voting alone and which are in most real situations very close to the ground truth. An important feature of this method is the ability to detect image pairs close to critical configurations or the cases when the focal length can’t be reliably estimated.

This work has been supported by EC project FP7-SPACE-218814 PRoVisG and by Czech Government under the research program MSM6840770038.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-Up Robust Features (SURF). CVIU 110, 346–359 (2008)

    Google Scholar 

  2. Bougnoux, S.: From projective to Euclidean space under and practical situation, a criticism of self-calibration. In: ICCV (1998)

    Google Scholar 

  3. Bujnak, M., Kukelova, Z., Pajdla, T.: 3D reconstruction from image collections with a single known focal length. In: ICCV (2009)

    Google Scholar 

  4. Bujnak, M., Kukelova, Z., Pajdla, T.: Robust focal length estimation by voting in multi-view scene reconstruction. Research Report CTU-CMP-2009-09 (2009)

    Google Scholar 

  5. Fischler, M.A., Bolles, R.C.: Random Sample Consensus: A paradigm for model fitting with applications to image analysis and automated cartography. Comm. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  6. Flickr, http://www.flickr.com/

  7. Hartley, R.: Estimation of relative camera positions for uncalibrated cameras. In: Sandini, G. (ed.) ECCV 1992. LNCS, vol. 588, pp. 579–587. Springer, Heidelberg (1992)

    Google Scholar 

  8. Hartley, R., Zisserman, A.: Multiple View Geometry in Computer Vision. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  9. Chum, O., Matas, J., Kittler, J.: Locally Optimized RANSAC. In: Michaelis, B., Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg (2003)

    Google Scholar 

  10. Chum, O., Werner, T., Matas, J.: Two-View Geometry Estimation Unaffected by a Dominant Plane. In: CVPR 2005, pp. 772–779 (2005)

    Google Scholar 

  11. Chum, O., Matas, J.: Matching with PROSAC - Progressive Sample Consensus. In: CVPR 2005 (2005)

    Google Scholar 

  12. Jones, M.C., Marron, J.S., Sheather, S.J.: A brief survey of bandwidth selection for density estimation. J. Amer. Stat. Assoc. 91(433), 401–407 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kahl, F., Triggs, B.: Critical Motions in Euclidean Structure from Motion. In: CVPR 1999, pp. 23–66 (1999)

    Google Scholar 

  14. Kanatani, K., Matsunaga, C.: Closed-form expression for focal lengths from the fundamental matrix. In: ACCV 2000, Taipei, Taiwan, vol. 1, pp. 128–133 (2000)

    Google Scholar 

  15. Kukelova, Z., Bujnak, M., Pajdla, T.: Polynomial eigenvalue solutions to the 5-pt and 6-pt relative pose problems. In: BMVC 2008 (2008)

    Google Scholar 

  16. Li, H.: A simple solution to the six-point two-view focal-length problem. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3954, pp. 200–213. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Li, X., Wu, C., Zach, C., Lazebnik, S., Frahm, J.: Modeling and recognition of landmark image collections using iconic scene graphs. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 427–440. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  18. Martinec, D., Pajdla, T.: Robust Rotation and Translation Estimation in multi-view Reconstruction. In: CVPR (2007)

    Google Scholar 

  19. Microsoft PhotoSynth., http://www.photosynth.net

  20. Muja, M., Lowe, D.: Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration, University of British Columbia (2008) (preprint)

    Google Scholar 

  21. Nister, D.: An efficient solution to the five-point relative pose. IEEE PAMI 26(6), 756–770 (2004)

    Google Scholar 

  22. Nister, D., Engels, C.: Visually Estimated Motion of Vehicle-Mounted Cameras with Global Uncertainty. In: SPIE Defense and Security Symposium, Unmanned Systems Technology VIII (April 2006)

    Google Scholar 

  23. Snavely, N., Seitz, S.M., Szeliski, R.S.: Photo Tourism: Exploring image collections in 3D. In: SIGGRAPH 2006, pp. 835–846 (2006)

    Google Scholar 

  24. Snavely, N., Seitz, S., Szeliski, R.: Skeletal graphs for efficient structure from motion. In: CVPR 2008 (2008)

    Google Scholar 

  25. Stewenius, H., Nister, D., Kahl, F., Schaffalitzky, F.: A minimal solution for relative pose with unknown focal length. In: CVPR 2005, pp. 789–794 (2005)

    Google Scholar 

  26. Stewenius, H., Engels, C., Nister, D.: Recent developments on direct relative orientation. ISPRS J. of Photogrammetry and Remote Sensing 60, 284–294 (2006)

    Article  Google Scholar 

  27. Sturm, P.: On Focal Length Calibration from Two Views. In: CVPR 2001 (2001)

    Google Scholar 

  28. Torii, A., Havlena, M., Pajdla, T., Leibe, B.: Measuring Camera Translation by the Dominant Apical Angle. In: CVPR 2008, Anchorage, Alaska, USA (2008)

    Google Scholar 

  29. Torii, A., Pajdla, T.: Omnidirectional camera motion estimation. In: VISAPP 2008 (2008)

    Google Scholar 

  30. Urbanek, M., Horaud, R., Sturm, P.: Combining Off- and On-line Calibration of a Digital Camera. In: Third Int. Conf. on 3-D Digital Imaging and Modeling (2001)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bujnak, M., Kukelova, Z., Pajdla, T. (2010). Robust Focal Length Estimation by Voting in Multi-view Scene Reconstruction. In: Zha, H., Taniguchi, Ri., Maybank, S. (eds) Computer Vision – ACCV 2009. ACCV 2009. Lecture Notes in Computer Science, vol 5994. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12307-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-12307-8_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-12306-1

  • Online ISBN: 978-3-642-12307-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics