Abstract
Learning To Rank (LTR) techniques aim to learn an effective document ranking function by combining several document features. While the function learned may be uniformly applied to all queries, many studies have shown that different ranking functions favour different queries, and the retrieval performance can be significantly enhanced if an appropriate ranking function is selected for each individual query. In this paper, we propose a novel Learning To Select framework that selectively applies an appropriate ranking function on a per-query basis. The approach employs a query feature to identify similar training queries for an unseen query. The ranking function which performs the best on this identified training query set is then chosen for the unseen query. In particular, we propose the use of divergence, which measures the extent that a document ranking function alters the scores of an initial ranking of documents for a given query, as a query feature. We evaluate our method using tasks from the TREC Web and Million Query tracks, in combination with the LETOR 3.0 and LETOR 4.0 feature sets. Our experimental results show that our proposed method is effective and robust for selecting an appropriate ranking function on a per-query basis. In particular, it always outperforms three state-of-the-art LTR techniques, namely Ranking SVM, AdaRank, and the automatic feature selection method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Xu, J., Li, H.: AdaRank: A Boosting Algorithm for Information Retrieval. In: Proceedings of SIGIR 2007, Amsterdam, The Netherlands (2007)
Metzler, D.: Automatic Feature Selection in the Markov Random Field Model for Information Retrieval. In: Proceedings of CIKM 2007, Lisbon, Portugal (2007)
Geng, X., Liu, T.Y., Qin, T., Arnold, A., Li, H., Shum, H.Y.: Query Dependent Ranking Using K-Nearest Neighbour. In: Proceedings of SIGIR 2008, Singapore (2008)
Liu, T.Y., Qin, T., Xu, J., Xiong, W.Y., Li, H.: LETOR: Benchmark Dataset for Research on Learning to Rank for Information Retrieval. In: Proceedings of SIGIR 2007 Learning to Rank workshop, Amsterdam, The Netherlands (2007)
Herbrich, R., Graepel, T., Obermayer, K.: Large Margin Rank Boundaries for Ordinal Regression. MIT Press, Cambridge (2000)
Joachims, T.: Optimizing Search Engines using Clickthrough Data. In: Proceedings of SIGKDD 2002, Alberta, Canada (2002)
Kamps, J., Mishne, G., de Rijke, M.: Language Models for Searching in Web Corpora. In: Proceedings of TREC 13, Gaithersburg, MD, USA (2004)
Peng, J., He, B., Ounis, I.: Predicting the Usefulness of Collection Enrichment for Enterprise Search. In: Azzopardi, L., Kazai, G., Robertson, S., Rüger, S., Shokouhi, M., Song, D., Yilmaz, E. (eds.) ICTIR 2009. LNCS, vol. 5766, pp. 366–370. Springer, Heidelberg (2009)
Plachouras, V., Ounis, I.: Usefulness of Hyperlink Structure for Query-Biased Topic Distillation. In: Proceedings of SIGIR 2004, Sheffield, UK (2004)
Plachouras, V.: Selective Web Information Retrieval. PhD thesis, University of Glasgow, UK (2006)
Peng, J., Ounis, I.: Selective Application of Query-Independent Features in Web Information Retrieval. In: Proceedings of ECIR 2009, Toulouse, France (2009)
Manmatha, R., Rath, T., Feng, F.: Modeling Score Distributions for Combining the Outputs of Search Engines. In: Proceedings of SIGIR 2001, New Orleans LA, USA (2001)
Xue, G.R., Yang, Q., Zeng, H.J., Yu, Y., Chen, Z.: Exploiting the Hierarchical Structure for Link Analysis. In: Proceedings of SIGIR 2005, Salvador, Brazil (2005)
Song, R., Wen, J.R., Shi, S., Xin, G., Liu, T.Y., Qin, T., Zheng, X., Zhang, J., Xue, G., Ma, W.Y.: Microsoft Research Asia at Web Track and Terabyte Track of TREC 2004. In: Proceedings of TREC 2004, Gaithersburg, MD, USA (2004)
Yang, K., Yu, N., Wead, A., La Rowe, G., Li, Y.H., Friend, C., Lee, Y.: WIDIT in TREC 2004 Genomics, Hard, Robust and Web Tracks. In: Proceedings of TREC 2004, Gaithersburg, MD, USA (2004)
Craswell, N., Hawking, D.: Overview of the TREC 2004 Web Track. In: Proceedings of TREC 2004, Gaithersburg, MD, USA (2004)
Kullback, S.: Information Theory and Statistics. John Wiley & Sons, New York (1959)
Lin, J.: Divergence Measures Based on the Shannon Entropy. IEEE Transactions on Information Theory 37(1), 145–151 (1991)
Lee, J.H.: Analyses of Multiple Evidence Combination. In: Proceedings of SIGIR 1997, Philadelphia, USA (1997)
Kirkpatrick, S., Gelatt, C., Vecchi, M.: Optimization by Simulated Annealing. Science 220(4598), 671–680 (1983)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2010 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Peng, J., Macdonald, C., Ounis, I. (2010). Learning to Select a Ranking Function. In: Gurrin, C., et al. Advances in Information Retrieval. ECIR 2010. Lecture Notes in Computer Science, vol 5993. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-12275-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-642-12275-0_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-12274-3
Online ISBN: 978-3-642-12275-0
eBook Packages: Computer ScienceComputer Science (R0)