Abstract
This paper presents a novel application of fuzzy-rough set-based feature selection (FRFS) for Mars terrain image classification. The work allows the induction of low-dimensionality feature sets from sample descriptions of feature patterns of a much higher dimensionality. In particular, FRFS is applied in conjunction with multi-layer perceptron and K-nearest neighbor based classifiers. Supported with comparative studies, the paper demonstrates that FRFS helps to enhance the effectiveness and efficiency of conventional classification systems, by minimizing redundant and noisy features. This is of particular significance for on-board image classification in future Mars rover missions.
Work funded by the Daphne Jackson Trust and the Royal Academy of Engineering.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Castano, R., et al.: Current results from a rover science data analysis system. In: Proc. of IEEE Aerospace Conf. (2006)
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley & Sons, New York (2001)
Huang, K., Aviyente, S.: Wavelet feature selection for image classification. IEEE Trans. Image Proc. 17, 1709–1720 (2008)
http://marswatch.astro.cornell.edu/pancam_instrument/mcmurdo_v2.html
Jensen, R., Shen, Q.: New approaches to fuzzy-rough feature selection. IEEE Trans. Fuzzy Syst. 17(4), 824–838 (2009)
Jensen, R., Shen, Q.: Computational intelligence and feature selection: rough and fuzzy approaches. IEEE Press/Wiley (2008)
Kachanubal, T., Udomhunsakul, S.: Rock textures classification based on textural and spectral features. Proc. of World Academy of Science, Eng. and Tech. 29, 110–116 (2008)
Kim, W.S., Steele, R.D., Ansar, A.I., Al, K., Nesnas, I.: Rover-Based visual target tracking validation and mission infusion. AIAA Space. 6717-6735 (2005)
Lepisto, L., Kunttu, I., Visa, A.: Rock image classification based on k-nearest neighbour voting. Vis. Im. and Sig. Proc., IEE Proc. 153(4), 475–482 (2006)
Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Patt. Anal. and Mach. Inte. 26, 530–549 (2004)
Rumelhart, D., Hinton, E., Williams, R.: Learning internal representations by error propagating. In: Rumelhart, D., McClell, J. (eds.) Parallel Distributed Processing. MIT Press, Cambridge (1986)
Thompson, D.R., Castano, R.: Performance comparison of rock detection algorithms for autonomous planetary geology. In: Proc. of IEEE Aerospace Conf. paper no. 1251 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Shang, C., Barnes, D., Shen, Q. (2009). Taking Fuzzy-Rough Application to Mars. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2009. Lecture Notes in Computer Science(), vol 5908. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10646-0_25
Download citation
DOI: https://doi.org/10.1007/978-3-642-10646-0_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-10645-3
Online ISBN: 978-3-642-10646-0
eBook Packages: Computer ScienceComputer Science (R0)