Skip to main content

Taking Fuzzy-Rough Application to Mars

Fuzzy-Rough Feature Selection for Mars Terrain Image Classification

  • Conference paper
Rough Sets, Fuzzy Sets, Data Mining and Granular Computing (RSFDGrC 2009)

Abstract

This paper presents a novel application of fuzzy-rough set-based feature selection (FRFS) for Mars terrain image classification. The work allows the induction of low-dimensionality feature sets from sample descriptions of feature patterns of a much higher dimensionality. In particular, FRFS is applied in conjunction with multi-layer perceptron and K-nearest neighbor based classifiers. Supported with comparative studies, the paper demonstrates that FRFS helps to enhance the effectiveness and efficiency of conventional classification systems, by minimizing redundant and noisy features. This is of particular significance for on-board image classification in future Mars rover missions.

Work funded by the Daphne Jackson Trust and the Royal Academy of Engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Castano, R., et al.: Current results from a rover science data analysis system. In: Proc. of IEEE Aerospace Conf. (2006)

    Google Scholar 

  2. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern classification, 2nd edn. Wiley & Sons, New York (2001)

    MATH  Google Scholar 

  3. Huang, K., Aviyente, S.: Wavelet feature selection for image classification. IEEE Trans. Image Proc. 17, 1709–1720 (2008)

    Article  Google Scholar 

  4. http://marswatch.astro.cornell.edu/pancam_instrument/mcmurdo_v2.html

  5. Jensen, R., Shen, Q.: New approaches to fuzzy-rough feature selection. IEEE Trans. Fuzzy Syst. 17(4), 824–838 (2009)

    Article  Google Scholar 

  6. Jensen, R., Shen, Q.: Computational intelligence and feature selection: rough and fuzzy approaches. IEEE Press/Wiley (2008)

    Google Scholar 

  7. Kachanubal, T., Udomhunsakul, S.: Rock textures classification based on textural and spectral features. Proc. of World Academy of Science, Eng. and Tech. 29, 110–116 (2008)

    Google Scholar 

  8. Kim, W.S., Steele, R.D., Ansar, A.I., Al, K., Nesnas, I.: Rover-Based visual target tracking validation and mission infusion. AIAA Space. 6717-6735 (2005)

    Google Scholar 

  9. Lepisto, L., Kunttu, I., Visa, A.: Rock image classification based on k-nearest neighbour voting. Vis. Im. and Sig. Proc., IEE Proc. 153(4), 475–482 (2006)

    Article  Google Scholar 

  10. Martin, D.R., Fowlkes, C.C., Malik, J.: Learning to detect natural image boundaries using local brightness, color, and texture cues. IEEE Trans. Patt. Anal. and Mach. Inte. 26, 530–549 (2004)

    Article  Google Scholar 

  11. Rumelhart, D., Hinton, E., Williams, R.: Learning internal representations by error propagating. In: Rumelhart, D., McClell, J. (eds.) Parallel Distributed Processing. MIT Press, Cambridge (1986)

    Google Scholar 

  12. Thompson, D.R., Castano, R.: Performance comparison of rock detection algorithms for autonomous planetary geology. In: Proc. of IEEE Aerospace Conf. paper no. 1251 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Shang, C., Barnes, D., Shen, Q. (2009). Taking Fuzzy-Rough Application to Mars. In: Sakai, H., Chakraborty, M.K., Hassanien, A.E., Ślęzak, D., Zhu, W. (eds) Rough Sets, Fuzzy Sets, Data Mining and Granular Computing. RSFDGrC 2009. Lecture Notes in Computer Science(), vol 5908. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10646-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10646-0_25

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10645-3

  • Online ISBN: 978-3-642-10646-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics