Skip to main content

Soccer Video Shot Classification Based on Color Characterization Using Dominant Sets Clustering

  • Conference paper
Advances in Multimedia Information Processing - PCM 2009 (PCM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 5879))

Included in the following conference series:

Abstract

In this paper, we propose a novel approach for dominant color region detection using dominant sets clustering and apply it to soccer video shot classification. Compared with the widely used histogram based dominant color extraction methods which require appropriate thresholds and sufficient training samples, the proposed method can automatically extract dominant color region without any threshold setting. Moreover, the dominant color distribution can be sufficiently characterized by the use of dominant sets clustering which naturally provides a principled measure of a cluster’s cohesiveness as well as a measure of a vertex participation to each group. The Earth Mover’s Distance (EMD) is employed to measure the similarity between dominant color regions of two frames, which is incorporated into the kernel function of SVM. Experimental results have shown the proposed method is much more effective.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Ekin, A., Tekalp, A.M., Mehrotra, R.: Automatic soccer video analysis and summarization. IEEE Transactions on Image Processing 12(7), 796–807 (2003)

    Article  Google Scholar 

  2. Xu, C.S., Wang, J.J., Lu, H.Q., Zhang, Y.F.: A novel framework for semantic annotation and personalized retrieval of sports video. IEEE Transaction on Multimedia 10(3), 421–435 (2008)

    Article  Google Scholar 

  3. Xie, L., Xu, P., Chang, S.-F., Dirakaran, A., Sun, H.: Structure analysis of soccer video with domain knowledge and hiddern markov models. Pattern Recognition Letters 25(7), 767–775 (2004)

    Article  Google Scholar 

  4. Wang, L., Lew, M., Xu, G.: Offense based temporal segmentation for event detection in soccer video. In: Workshop on Multimedia Information Retrieval (MIR), New York, USA (October 2004)

    Google Scholar 

  5. Duan, L.-Y., Xu, M., Chua, T.S., Tian, Q., Xu, C.S.: A unified framework for semantic shot classification in sports video. IEEE Transaction on Multimedia 7(6), 1066–1083 (2005)

    Article  Google Scholar 

  6. Tong, X.F., Liu, Q.S., Lu, H.Q.: Shot classification in broadcast soccer video. Vision and Image Analysis 7(1), 16–25 (2008)

    Google Scholar 

  7. Duan, L.-Y., Xu, M., Tian, Q., Xu, C.S.: Nonparametric color characterization using mean shift. In: Proceedings of the eleventh ACM international conference on Multimedia, November 2003, pp. 243–247 (2003)

    Google Scholar 

  8. Pavan, M., Pelillo, M.: Dominat sets and pairwise clustering. IEEE Trans. Pattern Analysis and Machine Intelligence 29(1), 167–172 (2007)

    Article  Google Scholar 

  9. Rubner, Y., Tomasi, C., Guibas, L.J.: The Earth mover’s distance as a metric for image retrieval. International Journal of Computer Vision 40(2), 99–121 (2000)

    Article  MATH  Google Scholar 

  10. Zhang, H., Kankanhalli, S., Soliar, S.: Automatic partitioning of full-motion video. Multimedia Systems 1(1), 10–28 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Li, L., Zhang, X., Hu, W., Li, W., Zhu, P. (2009). Soccer Video Shot Classification Based on Color Characterization Using Dominant Sets Clustering. In: Muneesawang, P., Wu, F., Kumazawa, I., Roeksabutr, A., Liao, M., Tang, X. (eds) Advances in Multimedia Information Processing - PCM 2009. PCM 2009. Lecture Notes in Computer Science, vol 5879. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-10467-1_83

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-10467-1_83

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-10466-4

  • Online ISBN: 978-3-642-10467-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics