Abstract
We present an approach for identifying and segmenting independently moving objects from dense scene flow information, using a moving stereo camera system. The detection and segmentation is challenging due to camera movement and non-rigid object motion. The disparity, change in disparity, and the optical flow are estimated in the image domain and the three-dimensional motion is inferred from the binocular triangulation of the translation vector. Using error propagation and scene flow reliability measures, we assign dense motion likelihoods to every pixel of a reference frame. These likelihoods are then used for the segmentation of independently moving objects in the reference image. In our results we systematically demonstrate the improvement using reliability measures for the scene flow variables. Furthermore, we compare the binocular segmentation of independently moving objects with a monocular version, using solely the optical flow component of the scene flow.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Sun, J., Zhang, W., Tang, X., Shum, H.: Background Cut. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 628–641. Springer, Heidelberg (2006)
Vidal, R., Sastry, S.: Optimal segmentation of dynamic scenes from two perspective views. In: 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Proceedings., vol. 2 (2003)
Brox, T., Rosenhahn, B., Cremers, D., Seidel, H.P.: High accuracy optical flow serves 3-D pose tracking: exploiting contour and flow based constraints. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3952, pp. 98–111. Springer, Heidelberg (2006)
Cremers, D., Soatto, S.: Motion competition: A variational framework for piecewise parametric motion segmentation 62(3), 249–265 (2005)
Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Bi-layer segmentation of binocular stereo video, vol. 2 (2005)
Wedel, A., Pock, T., Braun, J., Franke, U., Cremers, D.: Duality TV-L1 flow with fundamental matrix prior. In: Proc. Image and Vision Computing New Zealand, Christchurch, New Zealand (November 2008)
Valgaerts, L., Bruhn, A., Weickert, J.: A variational approach for the joint recovery of the optical flow and the fundamental matrix, Munich, Germany, June 2008, pp. 314–324 (2008)
Zhang, G., Jia, J., Xiong, W., Wong, T., Heng, P., Bao, H.: Moving object extraction with a hand-held camera, pp. 1–8 (2006)
Vaudrey, T., Wedel, A., Rabe, C., Klappstein, J., Klette, R.: Evaluation of moving object segmentation comparing 6D-Vision and monocular motion constraints. In: Proc. Image and Vision Computing New Zealand, Christchurch, New Zealand (November 2008)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision, pp. 1124–1137 (2004)
Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 65–81. Springer, Heidelberg (2002)
Klappstein, J., Stein, F., Franke, U.: Detectability of Moving Objects Using Correspondences over Two and Three Frames. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 112–121. Springer, Heidelberg (2007)
Huguet, F., Devernay, F.: A variational method for scene flow estimation from stereo sequences. In: IEEE Eleventh International Conference on Computer Vision, ICCV 2007, Rio de Janeiro, Brazil (October 2007)
Wedel, A., Rabe, C., Vaudrey, T., Brox, T., Franke, U., Cremers, D.: Efficient dense scene flow from sparse or dense stereo data. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part I. LNCS, vol. 5302, pp. 739–751. Springer, Heidelberg (2008)
Hirschmüller, H.: Stereo vision in structured environments by consistent semi-global matching, pp. 2386–2393 (2006)
Shimizu, M., Okutomi, M.: Precise sub-pixel estimation on area-based matching, pp. 90–97 (2001)
Bruhn, A., Weickert, J.: A confidence measure for variational optic flow methods. Geometric Properties for Incomplete Data (March 2006)
University of Auckland: enpeda. Image Sequence Analysis Test Site (EISATS) (2008), http://www.mi.auckland.ac.nz/EISATS/
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Wedel, A., Meißner, A., Rabe, C., Franke, U., Cremers, D. (2009). Detection and Segmentation of Independently Moving Objects from Dense Scene Flow. In: Cremers, D., Boykov, Y., Blake, A., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2009. Lecture Notes in Computer Science, vol 5681. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03641-5_2
Download citation
DOI: https://doi.org/10.1007/978-3-642-03641-5_2
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03640-8
Online ISBN: 978-3-642-03641-5
eBook Packages: Computer ScienceComputer Science (R0)