Skip to main content

Surface Quasi-Conformal Mapping by Solving Beltrami Equations

  • Conference paper
Mathematics of Surfaces XIII (Mathematics of Surfaces 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5654))

Included in the following conference series:

  • 1411 Accesses

Abstract

We consider the problem of constructing quasi-conformal mappings between surfaces by solving Beltrami equations. This is of great importance for shape registration.

In the physical world, most surface deformations can be rigorously modeled as quasi-conformal maps. The local deformation is characterized by a complex-value function, Beltrami coefficient, which describes the deviation from conformality of the deformation at each point.

We propose an effective algorithm to solve the quasi-conformal map from the Beltrami coefficient. The major strategy is to deform the conformal structure of the original surface to a new conformal structure by the Beltrami coefficient, such that the quasi-conformal map becomes a conformal map. By using holomorphic differential forms, conformal maps under the new conformal structure are calculated, which are the desired quasi-conformal maps.

The efficiency and efficacy of the algorithms are demonstrated by experimental results. Furthermore, the algorithms are robust for surfaces scanned from real life, and general for surfaces with different topologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Floater, M.S., Hormann, K.: Surface parameterization: a tutorial and survey. In: Advances in Multiresolution for Geometric Modelling, pp. 157–186. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  2. Kraevoy, V., Sheffer, A.: Cross-parameterization and compatible remeshing of 3d models. ACM Transactions on Graphics 23(3), 861–869 (2004)

    Article  Google Scholar 

  3. Jin, M., Kim, J., Gu, X.D.: Discrete surface ricci flow: Theory and applications. In: Martin, R., Sabin, M.A., Winkler, J.R. (eds.) Mathematics of Surfaces 2007. LNCS, vol. 4647, pp. 209–232. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  4. Jin, M., Kim, J., Luo, F., Gu, X.: Discrete surface ricci flow. IEEE Transaction on Visualization and Computer Graphics 14(5), 1030–1043 (2008)

    Article  Google Scholar 

  5. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2(1), 15–36 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  6. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. In: SIGGRAPH 2002, pp. 362–371 (2002)

    Google Scholar 

  7. Desbrun, M., Meyer, M., Alliez, P.: Intrinsic parameterizations of surface meshes. Computer Graphics Forum (Proc. Eurographics 2002) 21(3), 209–218 (2002)

    Article  Google Scholar 

  8. Floater, M.S.: Mean value coordinates. Computer Aided Geometric Design 20(1), 19–27 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gotsman, C., Gu, X., Sheffer, A.: Fundamentals of spherical parameterization for 3D meshes. ACM Transactions on Graphics 22(3), 358–363 (2003)

    Article  Google Scholar 

  10. Gu, X., Wang, Y., Chan, T.F., Thompson, P.M., Yau, S.-T.: Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans. Med. Imaging 23(8), 949–958 (2004)

    Article  Google Scholar 

  11. Gu, X., Yau, S.-T.: Global conformal parameterization. In: Symposium on Geometry Processing, pp. 127–137 (2003)

    Google Scholar 

  12. Mercat, C.: Discrete riemann surfaces and the ising model. Communications in Mathematical Physics 218(1), 177–216 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hirani, A.N.: Discrete exterior calculus. PhD thesis, California Institute of Technology (2003)

    Google Scholar 

  14. Jin, M., Wang, Y., Yau, S.-T., Gu, X.: Optimal global conformal surface parameterization. In: IEEE Visualization 2004, pp. 267–274 (2004)

    Google Scholar 

  15. Gortler, S.J., Gotsman, C., Thurston, D.: Discrete one-forms on meshes and applications to 3D mesh parameterization. Computer Aided Geometric Design 23(2), 83–112 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tong, Y., Alliez, P., Cohen-Steiner, D., Desbrun, M.: Designing quadrangulations with discrete harmonic forms. In: Symposium on Geometry Processing, pp. 201–210 (2006)

    Google Scholar 

  17. Tewari, G., Gotsman, C., Gortler, S.J.: Meshing genus-1 point clouds using discrete one-forms. Comput. Graph. 30(6), 917–926 (2006)

    Article  Google Scholar 

  18. Desbrun, M.: Discrete differential forms and applications to surface tiling. In: SCG 2006: Proceedings of the twenty-second annual symposium on Computational geometry, p. 40. ACM, New York (2006)

    Chapter  Google Scholar 

  19. Tong, Y., Alliez, P., Cohen-Steiner, D., Desbrun, M.: Designing quadrangulations with discrete harmonic forms. In: SGP 2006: Proceedings of the fourth Eurographics symposium on Geometry processing, pp. 201–210 (2006)

    Google Scholar 

  20. Hong, W., Gu, X., Qiu, F., Jin, M., Kaufman, A.E.: Conformal virtual colon flattening. In: Symposium on Solid and Physical Modeling, pp. 85–93 (2006)

    Google Scholar 

  21. Wang, S., Wang, Y., Jin, M., Gu, X.D., Samaras, D.: Conformal geometry and its applications on 3d shape matching, recognition, and stitching. IEEE Trans. Pattern Anal. Mach. Intell. 29(7), 1209–1220 (2007)

    Article  Google Scholar 

  22. Zeng, W., Zeng, Y., Wang, Y., Yin, X., Gu, X., Samaras, D.: 3d non-rigid surface matching and registration based on holomorphic differentials. In: Forsyth, D., Torr, P., Zisserman, A. (eds.) ECCV 2008, Part III. LNCS, vol. 5304, pp. 1–14. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Gu, X., He, Y., Qin, H.: Manifold splines. Graphical Models 68(3), 237–254 (2006)

    Article  MATH  Google Scholar 

  24. Guggenheimer, H.W.: Differential Geometry. Dover Publications (1977)

    Google Scholar 

  25. Farkas, H.M., Kra, I.: Riemann Surfaces. Springer, Heidelberg (2004)

    MATH  Google Scholar 

  26. Henrici, P.: Applide and Computational Complex Analysis, Discrete Fourier Analysis, Cauchy Integrals, Construction of Conformal Maps, Univalent Functions, vol. 3. Wiley-Interscience, Hoboken (1993)

    MATH  Google Scholar 

  27. Wang, Y., Gupta, M., Zhang, S., Samaras, D., Huang, P.: High resolution tracking of non-rigid 3D motion of densely sampled data using harmonic maps. In: Proc. International Conference on Computer Vision, pp. 388–395 (2005)

    Google Scholar 

  28. Gu, X., Zhang, S., Huang, P., Zhang, L., Yau, S.-T., Martin, R.: Holoimages. In: SPM 2006: Proceedings of the 2006 ACM symposium on Solid and physical modeling, pp. 129–138 (2006)

    Google Scholar 

  29. Chow, B., Luo, F.: Combinatorial ricci flows on surfaces. Journal Differential Geometry 63(1), 97–129 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Luo, F.: Combinatorial yamabe flow on surfaces. Commun. Contemp. Math. 6(5), 765–780 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Springborn, B., Schröder, P., Pinkall, U.: Conformal equivalence of triangle meshes. ACM Trans. Graph. 27(3), 1–11 (2008)

    Article  Google Scholar 

  32. Zeng, W., Jin, M., Luo, F., Gu, X.: Computing canonical homotopy class representative using hyperbolic structure. In: IEEE International Conference on Shape Modeling and Applications (SMI 2009) (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zeng, W., Luo, F., Yau, S.T., Gu, X.D. (2009). Surface Quasi-Conformal Mapping by Solving Beltrami Equations. In: Hancock, E.R., Martin, R.R., Sabin, M.A. (eds) Mathematics of Surfaces XIII. Mathematics of Surfaces 2009. Lecture Notes in Computer Science, vol 5654. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03596-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03596-8_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03595-1

  • Online ISBN: 978-3-642-03596-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics