Abstract
Existing theorem prover tools do not adequately support reasoning about general recursive datatypes. Better support for such datatypes would facilitate reasoning about a wide variety of real-world programs, including those written in continuation-passing style, that are beyond the scope of current tools.
This paper introduces a new formalization of a universal domain that is suitable for modeling general recursive datatypes. The construction is purely definitional, introducing no new axioms. Defining recursive types in terms of this universal domain will allow a theorem prover to derive strong reasoning principles, with soundness ensured by construction.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agerholm, S.: A HOL Basis for Reasoning about Functional Programs. PhD thesis, University of Aarhus (1994)
Amadio, R.M., Curien, P.-L.: Domains and Lambda-Calculi. Cambridge University Press, New York (1998)
Benton, N., Kennedy, A., Varming, C.: Some domain theory and denotational semantics in Coq. In: Urban, C. (ed.) TPHOLs 2009. LNCS, vol. 5674, pp. 115–130. Springer, Heidelberg (2009)
Berghofer, S., Wenzel, M.: Inductive datatypes in HOL - lessons learned in formal-logic engineering. In: Bertot, Y., Dowek, G., Hirschowitz, A., Paulin, C., Théry, L. (eds.) TPHOLs 1999. LNCS, vol. 1690, pp. 19–36. Springer, Heidelberg (1999)
Bird, R.S., Meertens, L.G.L.T.: Nested datatypes. In: Jeuring, J. (ed.) MPC 1998. LNCS, vol. 1422, pp. 52–67. Springer, Heidelberg (1998)
Gunter, C.: Profinite Solutions for Recursive Domain Equations. PhD thesis, University of Wisconsin at Madison (1985)
Gunter, C.A.: Universal profinite domains. Information and Computation 72(1), 1–30 (1987)
Gunter, C.A.: Semantics of Programming Languages: Structures and Techniques. In: Foundations of Computing, MIT Press, Cambridge (1992)
Gunter, E.L.: A broader class of trees for recursive type definitions for HOL. In: Joyce, J.J., Seger, C.-J.H. (eds.) HUG 1993. LNCS, vol. 780, pp. 141–154. Springer, Heidelberg (1994)
Huffman, B.: Reasoning with powerdomains in Isabelle/HOLCF. In: Mohamed, O.A., Muñoz, C., Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 45–56. Springer, Heidelberg (2008)
Huffman, B., Matthews, J., White, P.: Axiomatic constructor classes in Isabelle/HOLCF. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp. 147–162. Springer, Heidelberg (2005)
Melham, T.F.: Automating recursive type definitions in higher order logic. In: Current Trends in Hardware Verification and Automated Theorem Proving, pp. 341–386. Springer, Heidelberg (1989)
Müller, O., Nipkow, T., von Oheimb, D., Slotosch, O.: HOLCF = HOL + LCF. Journal of Functional Programming 9, 191–223 (1999)
Paulson, L.C.: Mechanizing coinduction and corecursion in higher-order logic. Journal of Logic and Computation 7 (1997)
Plotkin, G.D.: A powerdomain construction. SIAM J. Comput. 5(3), 452–487 (1976)
Sulzmann, M., Chakravarty, M.M.T., Jones, S.P., Donnelly, K.: System F with type equality coercions. In: TLDI 2007: Proceedings of the 2007 ACM SIGPLAN international workshop on Types in languages design and implementation, pp. 53–66. ACM, New York (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Huffman, B. (2009). A Purely Definitional Universal Domain. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2009. Lecture Notes in Computer Science, vol 5674. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03359-9_19
Download citation
DOI: https://doi.org/10.1007/978-3-642-03359-9_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-03358-2
Online ISBN: 978-3-642-03359-9
eBook Packages: Computer ScienceComputer Science (R0)