Skip to main content

Ensemble Methods for Boosting Visualization Models

  • Conference paper
Bio-Inspired Systems: Computational and Ambient Intelligence (IWANN 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5517))

Included in the following conference series:

  • 2202 Accesses

Abstract

Topology preserving mappings are great tools for data visualization and inspection in large datasets. This research presents a study of the combination of different ensemble training techniques with a novel summarization algorithm for ensembles of topology preserving models. The aim of these techniques is the increase of the truthfulness of the visualization of the dataset obtained by this kind of algorithms and, as an extension, the stability conditions of the former. A study and comparison of the performance of some novel and classical ensemble techniques, using well-known datasets from the UCI repository (Iris and Wine), are presented in this paper to test their suitability, in the fields of data visualization and topology preservation when combined with one of the most widespread of that kind of models such as the Self-Organizing Map.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kohonen, T.: Self-organizing maps. Series in Information Sciences, vol. 30. Springer, Berlin (1995)

    MATH  Google Scholar 

  2. Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)

    MATH  Google Scholar 

  3. Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting. Journal of Computer and System Sciences 55, 119–139 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Kohonen, T.: The Self-Organizing Map. Neurocomputing 21, 1–6 (1998)

    Article  MATH  Google Scholar 

  5. Kohonen, T., Lehtio, P., Rovamo, J., et al.: A Principle of Neural Associative Memory. Neuroscience 2, 1065–1076 (1977)

    Article  Google Scholar 

  6. Pölzlbauer, G.: Survey and Comparison of Quality Measures for Self-Organizing Maps. In: WDA 2004, pp. 67–82 (2004)

    Google Scholar 

  7. Polani, D.: Measures for the organization of self-organizing maps. In: Seiffert, U., Jain, L.C. (eds.) Self-Organizing Neural Networks: Recent Advances and Applications. Studies in Fuzziness and Soft Computing, vol. 16, pp. 13–44. Physica-Verlag, Heidelberg (2003)

    Google Scholar 

  8. Vesanto, J.: Data Mining Techniques Based on the Self-Organizing Map, 63 (1997)

    Google Scholar 

  9. Kiviluoto, K.: Topology Preservation in Self-Organizing Maps. In: ICNN 1996, vol. 1, pp. 294–299 (1996)

    Google Scholar 

  10. Lampinen, J.: On Clustering Properties of Hierarchical Self-Organizing Maps. Artificial Neural Networks 2, II, 1219–1222 (1992)

    Article  MATH  Google Scholar 

  11. Vesanto, J., Sulkava, M., Hollmén, J.: On the Decomposition of the Self-Organizing Map Distortion Measure. In: WSOM 2003, pp. 11–16 (2003)

    Google Scholar 

  12. Kaski, S., Lagus, K.: Comparing Self-Organizing Maps. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 809–814. Springer, Heidelberg (1996)

    Chapter  Google Scholar 

  13. Heskes, T.: Balancing between Bagging and Bumping. NIPS 9, 466–472 (1997)

    Google Scholar 

  14. Schwenk, H., Bengio, Y.: Boosting Neural Networks. Neural Computation 12, 1869–1887 (2000)

    Article  Google Scholar 

  15. Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm, pp. 148–156 (1996)

    Google Scholar 

  16. Baruque, B., Corchado, E., Yin, H.: Quality of Adaptation of Fusion ViSOM. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 728–738. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  17. Corchado, E., Baruque, B., Yin, H.: Boosting Unsupervised Competitive Learning Ensembles. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 339–348. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  18. Baruque, B., Corchado, E., Rovira, J., et al.: Application of Topology Preserving Ensembles for Sensory Assessment in the Food Industry, pp. 491–497 (2008)

    Google Scholar 

  19. Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007) (2008)

    Google Scholar 

  20. Georgakis, A., Li, H., Gordan, M.: An Ensemble of SOM Networks for Document Organization and Retrieval. In: AKRR 2005, pp. 6–141 (2005)

    Google Scholar 

  21. Saavedra, C., Salas, R., Moreno, S., et al.: Fusion of Self Organizing Maps. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 227–234. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Baruque, B., Corchado, E., Mata, A., Corchado, J.M. (2009). Ensemble Methods for Boosting Visualization Models. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02478-8_21

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02477-1

  • Online ISBN: 978-3-642-02478-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics