Abstract
Topology preserving mappings are great tools for data visualization and inspection in large datasets. This research presents a study of the combination of different ensemble training techniques with a novel summarization algorithm for ensembles of topology preserving models. The aim of these techniques is the increase of the truthfulness of the visualization of the dataset obtained by this kind of algorithms and, as an extension, the stability conditions of the former. A study and comparison of the performance of some novel and classical ensemble techniques, using well-known datasets from the UCI repository (Iris and Wine), are presented in this paper to test their suitability, in the fields of data visualization and topology preservation when combined with one of the most widespread of that kind of models such as the Self-Organizing Map.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kohonen, T.: Self-organizing maps. Series in Information Sciences, vol. 30. Springer, Berlin (1995)
Breiman, L.: Bagging Predictors. Machine Learning 24, 123–140 (1996)
Freund, Y., Schapire, R.E.: A Decision-Theoretic Generalization of on-Line Learning and an Application to Boosting. Journal of Computer and System Sciences 55, 119–139 (1997)
Kohonen, T.: The Self-Organizing Map. Neurocomputing 21, 1–6 (1998)
Kohonen, T., Lehtio, P., Rovamo, J., et al.: A Principle of Neural Associative Memory. Neuroscience 2, 1065–1076 (1977)
Pölzlbauer, G.: Survey and Comparison of Quality Measures for Self-Organizing Maps. In: WDA 2004, pp. 67–82 (2004)
Polani, D.: Measures for the organization of self-organizing maps. In: Seiffert, U., Jain, L.C. (eds.) Self-Organizing Neural Networks: Recent Advances and Applications. Studies in Fuzziness and Soft Computing, vol. 16, pp. 13–44. Physica-Verlag, Heidelberg (2003)
Vesanto, J.: Data Mining Techniques Based on the Self-Organizing Map, 63 (1997)
Kiviluoto, K.: Topology Preservation in Self-Organizing Maps. In: ICNN 1996, vol. 1, pp. 294–299 (1996)
Lampinen, J.: On Clustering Properties of Hierarchical Self-Organizing Maps. Artificial Neural Networks 2, II, 1219–1222 (1992)
Vesanto, J., Sulkava, M., Hollmén, J.: On the Decomposition of the Self-Organizing Map Distortion Measure. In: WSOM 2003, pp. 11–16 (2003)
Kaski, S., Lagus, K.: Comparing Self-Organizing Maps. In: Vorbrüggen, J.C., von Seelen, W., Sendhoff, B. (eds.) ICANN 1996. LNCS, vol. 1112, pp. 809–814. Springer, Heidelberg (1996)
Heskes, T.: Balancing between Bagging and Bumping. NIPS 9, 466–472 (1997)
Schwenk, H., Bengio, Y.: Boosting Neural Networks. Neural Computation 12, 1869–1887 (2000)
Freund, Y., Schapire, R.E.: Experiments with a New Boosting Algorithm, pp. 148–156 (1996)
Baruque, B., Corchado, E., Yin, H.: Quality of Adaptation of Fusion ViSOM. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 728–738. Springer, Heidelberg (2007)
Corchado, E., Baruque, B., Yin, H.: Boosting Unsupervised Competitive Learning Ensembles. In: de Sá, J.M., Alexandre, L.A., Duch, W., Mandic, D.P. (eds.) ICANN 2007. LNCS, vol. 4668, pp. 339–348. Springer, Heidelberg (2007)
Baruque, B., Corchado, E., Rovira, J., et al.: Application of Topology Preserving Ensembles for Sensory Assessment in the Food Industry, pp. 491–497 (2008)
Asuncion, A., Newman, D.J.: UCI Machine Learning Repository (2007) (2008)
Georgakis, A., Li, H., Gordan, M.: An Ensemble of SOM Networks for Document Organization and Retrieval. In: AKRR 2005, pp. 6–141 (2005)
Saavedra, C., Salas, R., Moreno, S., et al.: Fusion of Self Organizing Maps. In: Sandoval, F., Prieto, A.G., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, pp. 227–234. Springer, Heidelberg (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Baruque, B., Corchado, E., Mata, A., Corchado, J.M. (2009). Ensemble Methods for Boosting Visualization Models. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds) Bio-Inspired Systems: Computational and Ambient Intelligence. IWANN 2009. Lecture Notes in Computer Science, vol 5517. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02478-8_21
Download citation
DOI: https://doi.org/10.1007/978-3-642-02478-8_21
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02477-1
Online ISBN: 978-3-642-02478-8
eBook Packages: Computer ScienceComputer Science (R0)