Skip to main content

Incremental Figure-Ground Segmentation Using Localized Adaptive Metrics in LVQ

  • Conference paper
Advances in Self-Organizing Maps (WSOM 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5629))

Included in the following conference series:

  • 1456 Accesses

Abstract

Vector quantization methods are confronted with a model selection problem, namely the number of prototypical feature representatives to model each class. In this paper we present an incremental learning scheme in the context of figure-ground segmentation. In presence of local adaptive metrics and supervised noisy information we use a parallel evaluation scheme combined with a local utility function to organize a learning vector quantization (LVQ) network with an adaptive number of prototypes and verify the capabilities on a real world figure-ground segmentation task.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Denecke, A., Wersing, H., Steil, J.J., Körner, E.: Online figure-ground segmentation with adaptive metrics in generalized LVQ. Neurocomputing 72(7-9), 1470–1482 (2009)

    Article  Google Scholar 

  2. Hamker, F.H.: Life-long learning cell structures —continuously learning without catastrophic interference. Neural Networks 14(4-5), 551–573 (2001)

    Article  Google Scholar 

  3. Kirstein, S., Wersing, H., Körner, E.: A biologically motivated visual memory architecture for online learning of objects. Neural Networks 1, 65–77 (2008)

    Article  MATH  Google Scholar 

  4. Fritzke, B.: A growing neural gas network learns topologies. In: Tesauro, G., Touretzky, D.S., Leen, T.K. (eds.) NIPS, pp. 625–632. MIT Press, Cambridge (1994)

    Google Scholar 

  5. Sato, A., Yamada, K.: Generalized learning vector quantization. In: Advances in Neural Information Processing Systems, vol. 7, pp. 423–429 (1995)

    Google Scholar 

  6. Wersing, H., Kirstein, S., Götting, M., Brandl, H., Dunn, M., Mikhailova, I., Goerick, C., Steil, J.J., Ritter, H., Körner, E.: Online learning of objects in a biologically motivated visual architecture. Int. J. Neur. Syst. 17(4), 219–230 (2007)

    Article  Google Scholar 

  7. Schneider, P., Biehl, M., Schleif, F.-M., Hammer, B.: Advanced metric adaptation in Generalized LVQ for classification of mass spectrometry data. In: Proceedings of 6th International Workshop on Self-Organizing Maps (WSOM) (2007)

    Google Scholar 

  8. Crammer, K., Gilad-Bachrach, R., Navot, A., Tishby, N.: Margin analysis of the LVQ algorithm. In: NIPS (2002)

    Google Scholar 

  9. Jirayusakul, A., Auwatanamongkol, S.: A supervised growing neural gas algorithm for cluster analysis. Int. J. Hybrid Intell. Syst. 4(4), 217–229 (2007)

    Article  MATH  Google Scholar 

  10. Schleif, F.M., Hammer, B., Villmann, T.: Margin-based active learning for LVQ networks. Neurocomput 70(7-9), 1215–1224 (2007)

    Article  Google Scholar 

  11. Fritzke, B.: The LBG-U method for vector quantization – an improvement over LBG inspired from neural networks. Neural Process. Lett. 5(1), 35–45 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Denecke, A., Wersing, H., Steil, J.J., Körner, E. (2009). Incremental Figure-Ground Segmentation Using Localized Adaptive Metrics in LVQ. In: Príncipe, J.C., Miikkulainen, R. (eds) Advances in Self-Organizing Maps. WSOM 2009. Lecture Notes in Computer Science, vol 5629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02397-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-02397-2_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-02396-5

  • Online ISBN: 978-3-642-02397-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics