Abstract
We apply a recent formalization of visualization as information retrieval to linear projections. We introduce a method that optimizes a linear projection for an information retrieval task: retrieving neighbors of input samples based on their low-dimensional visualization coordinates only. The simple linear projection makes the method easy to interpret, while the visualization task is made well-defined by the novel information retrieval criterion. The method has a further advantage: it projects input features, but the input neighborhoods it preserves can be given separately from the input features, e.g. by external data of sample similarities. Thus the visualization can reveal the relationship between data features and complicated data similarities. We further extend the method to kernel-based projections.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Cevikalp, H., Verbeek, J., Jurie, F., Kläser, A.: Semi-supervised dimensionality reduction using pairwise equivalence constraints. In: Proc. VISAPP 2008, pp. 489–496 (2008)
Peltonen, J., Kaski, S.: Discriminative components of data. IEEE Trans. Neural Networks 16(1), 68–83 (2005)
Goldberger, J., Roweis, S., Hinton, G., Salakhutdinov, R.: Neighbourhood components analysis. In: Proc. NIPS 2004, pp. 513–520. MIT Press, Cambridge (2005)
Globerson, A., Roweis, S.: Metric learning by collapsing classes. In: Proc. NIPS 2005, pp. 451–458. MIT Press, Cambridge (2006)
Venna, J., Kaski, S.: Nonlinear dimensionality reduction as information retrieval. In: Proc. AISTATS 2007 (2007)
Peltonen, J., Aidos, H., Kaski, S.: Supervised nonlinear dimensionality reduction by neighbor retrieval. In: Proc. ICASSP 2009 (in press, 2009)
Hinton, G., Roweis, S.T.: Stochastic neighbor embedding. In: Proc. NIPS 2002, pp. 833–840. MIT Press, Cambridge (2002)
Tenenbaum, J.B., de Silva, V., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290 (December 2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Peltonen, J. (2009). Visualization by Linear Projections as Information Retrieval. In: PrÃncipe, J.C., Miikkulainen, R. (eds) Advances in Self-Organizing Maps. WSOM 2009. Lecture Notes in Computer Science, vol 5629. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02397-2_27
Download citation
DOI: https://doi.org/10.1007/978-3-642-02397-2_27
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02396-5
Online ISBN: 978-3-642-02397-2
eBook Packages: Computer ScienceComputer Science (R0)