Abstract
In this work, we present an approach that utilizes a graph-based representation of symbolic musical data in the context of automatic topographic mapping. A novel approach is introduced that represents melodic progressions as graph structures providing a dissimilarity measure which complies with the invariances in the human perception of melodies. That way, music collections can be processed by non-Euclidean variants of Neural Gas or Self-Organizing Maps for clustering, classification, or topographic mapping for visualization. We demonstrate the performance of the technique on several datasets of classical music.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Birmingham, W., Dannenberg, R., Pardo, B.: Query by humming with the vocalsearch system. Commun. ACM 49(8), 49–52 (2006)
Cataltepe, Z., Yaslan, Y., Sonmez, A.: Music genre classification using midi and audio features. EURASIP Journal on Advances in Signal Processing, Article ID 36409 (2007)
Cilibrasi, R., Vitányi, P.: Clustering by compression. IEEE Transactions on Information Theory 51(4), 1523–1545 (2005)
Cilibrasi, R., Vitányi, P., de Wolf, R.: Algorithmic clustering of music based on string compression. Computer Music Journal 28(4), 49–67 (2004)
Cruz-Alcázar, P.P., Vidal, E.: Two grammatical inference applications in music processing. Applied Artificial Intelligence 22(1&2), 53–76 (2008)
Di Lorenzo, P., Di Maio, G.: The hausdorff metric in the melody space: A new approach to melodic similarity. In: ICMPC (2006)
Dorrell, P.: What Is Music?: Solving a Scientific Mystery. Lulu(print on demand) (2005)
Eerola, T., Toiviainen, P.: MIDI Toolbox: MATLAB Tools for Music Research. University of Jyvaskyla (2004)
Hammer, B., Hasenfuss, A.: Relational neural gas. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 190–204. Springer, Heidelberg (2007)
Hammer, B., Hasenfuss, A.: Relational neural gas. In: Hertzberg, J., Beetz, M., Englert, R. (eds.) KI 2007. LNCS (LNAI), vol. 4667, pp. 190–204. Springer, Heidelberg (2007)
Klapuri, A., Davy, M. (eds.): Signal Processing Methods for Music Transcription. Springer, New York (2006)
Li, M., Vitányi, P.: An Introduction to Kolmogorov Complexity and Its Applications. Springer, Heidelberg (1997)
Londei, A., Loreto, V., Belardinelli, M.O.: Musical style and authorship categorization by informative compressors. In: Proc. ESCOM Conference (2003)
Neuhaus, M., Bunke, H.: Bridging the Gap Between Graph Edit Distance and Kernel Machines. World Scientific, Singapore (2007)
Pardo, B., Birmingham, W.P.: Algorithms for chordal analysis. Computer Music Journal 26(2), 27–49 (2002)
Pinto, A., van Leuken, R.H., Demirci, M.F., Wiering, F., Veltkamp, R.C.: Indexing music collection through graph spectra. In: Proceedings of the International Conference of Music Information Retrieval (2007)
Romming, C.A., Selfridge-Field, E.: Algorithms for polyphonic music retrieval: The hausdorff metric and geometric hashing. In: Proceedings of the International Conference of Music Information Retrieval (2007)
Ruppin, A., Yeshurun, H.: Midi music genre classification by invariant features. In: Proceedings of the International Conference of Music Information Retrieval (2006)
Ukkonen, E., Lemström, K., Maekinen, V.: Geometric algorithms for transposition invariant content-based music retrival. In: Proceedings of the International Conference of Music Information Retrieval (2003)
Woodruff, J., Pardo, B.: Using pitch, amplitude modulation, and spatial cues for separation of harmonic instruments from stereo music recordings. EURASIP Journal on Advances in Signal Processing, Article ID 86369 (2007)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Mokbel, B., Hasenfuss, A., Hammer, B. (2009). Graph-Based Representation of Symbolic Musical Data. In: Torsello, A., Escolano, F., Brun, L. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2009. Lecture Notes in Computer Science, vol 5534. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-02124-4_5
Download citation
DOI: https://doi.org/10.1007/978-3-642-02124-4_5
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-02123-7
Online ISBN: 978-3-642-02124-4
eBook Packages: Computer ScienceComputer Science (R0)