Skip to main content

Memetic Variation Local Search vs. Life-Time Learning in Electrical Impedance Tomography

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5484))

Included in the following conference series:

Abstract

In this article, various metaheuristics for a numerical optimization problem with application to Electric Impedance Tomography are tested and compared. The experimental setup is composed of a real valued Genetic Algorithm, the Differential Evolution, a self adaptive Differential Evolution recently proposed in literature, and two novel Memetic Algorithms designed for the problem under study. The two proposed algorithms employ different algorithmic philosophies in the field of Memetic Computing. The first algorithm integrates a local search into the operations of the offspring generation, while the second algorithm applies a local search to individuals already generated in the spirit of life-time learning. Numerical results show that the fitness landscape and difficulty of the optimization problem heavily depends on the geometrical configuration, as well the proposed Memetic Algorithms seem to be more promising when the geometrical conditions make the problem harder to solve.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Henderson, R., Webster, J.: An impedance camera for spatially specific measurements of the thorax. IEEE Trans. of Biom. Eng. 25, 250–254 (1978)

    Article  Google Scholar 

  2. Vauhkonen, M., Vadász, D., Karjalainen, P.A., Somersalo, E., Kaipio, J.P.: Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans. on Medical Imaging 17, 285–293 (1998)

    Article  Google Scholar 

  3. Neittaanmäki, P., Rudnicki, M., Savini, A.: Inverse Problems and Optimal Design in Electricity and Magnetism. Oxford University Press, Oxford (1996)

    MATH  Google Scholar 

  4. Calderón, A.P.: On an inverse boundary value problem. Computational and Applied Mathematics 25(2–3), 133–138 (2006)

    MathSciNet  MATH  Google Scholar 

  5. Uhlmann, G.: Developments in inverse problems since Calderón’s foundational paper. In: Christ, M.E., Kenig, C.E. (eds.) Harmonic Analysis and Partial Differential Equations, ch. 19. University of Chicago (1999)

    Google Scholar 

  6. Cheney, M., Isaacson, D., Newell, J., Simske, S., Goble, J.: NOSER: An algorithm for solving the inverse conductivity problem. IJIST 2, 66–75 (2005)

    Google Scholar 

  7. Cheng, K.-S., Chen, B.-H., Tong, H.-S.: Electrical impedance image reconstruction using the genetic algorithm. In: Proc. of 18th Ann. Int. Conf. IEEE Eng. in Med. and Bio. Soc., pp. 768–769 (1996)

    Google Scholar 

  8. Carosio, G., Rolnik, V., Seleghim, P.J.: Improving efficiency in electrical impedance tomography problem by hybrid parallel genetic algorithm and a priori information. Journal of Computational Physics 173, 433–454 (2001)

    Article  Google Scholar 

  9. Olmi, R., Bini, M.: A genetic algorithm approach to image reconstruction in electrical impedance tomography. IEEE Trans. EC 4(1), 83–88 (2000)

    Google Scholar 

  10. Li, Y., Rao, L., He, R., Xu, G., Wu, Q., Yan, W., Dong, G., Yang, Q.: A novel combination method of electrical impedance tomography inverse problem for brain imaging. IEEE Trans. Magnetics 41, 1848–1851 (2005)

    Article  Google Scholar 

  11. Kononova, A.V., Ingham, D.B., Pourkashanian, M.: Simple scheduled memetic algorithm for inverse problems in higher dimensions: Application to chemical kinetics. In: Proc. of the IEEE WCCI, pp. 3906–3913 (2008)

    Google Scholar 

  12. Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with crossover hill-climbing. ECJ 12(3), 273–302 (2004)

    Google Scholar 

  13. Vauhkonen, M., Kaipio, J.P., Somersalo, E., Karjalainen, P.A.: Electrical impedance tomography with basis constrains. Inv. Pr. 13, 523–530 (1997)

    Article  MATH  Google Scholar 

  14. Cheney, M., Isaacson, D., Newell, J.: Electrical impedance tomography. SIAM review 14, 85–101 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kaipio, J., Somersalo, E.: Statistical inverse problems: Discretization, model reduction and inverse crimes. JCAM 198(2), 493–504 (2007)

    MathSciNet  MATH  Google Scholar 

  16. Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans. EC 10(6), 646–657 (2006)

    Google Scholar 

  17. Biggs, M.: Constrained minimization using recursive quadratic programming. In: Dixon, L., Szergo, G. (eds.) Towards Global Optimization, pp. 341–349 (1975)

    Google Scholar 

  18. Nelder, A., Mead, R.: A simplex method for function optimization. Computation Journal 7, 308–313 (1965)

    MATH  Google Scholar 

  19. Ong, Y.S., Keane, A.J.: Meta-lamarkian learning in memetic algorithms. IEEE Trans. on EC 8(2), 99–110 (2004)

    Google Scholar 

  20. Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Sumner, M.: A fast adaptive memetic algorithm for on-line and off-line control design of PMSM drives. IEEE Trans. on SMC-B 37(1), 28–41 (2007)

    Google Scholar 

  21. Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-schemata. In: Foundations of GAs 2, pp. 187–202. Morgan Kaufmann, San Francisco (1993)

    Google Scholar 

  22. Zielinski, K., Weitkemper, P., Laur, R., Kammeyer, K.-D.: Parameter study for differential evolution using a power allocation problem including interference cancellation. In: Proc. of the IEEE CEC, pp. 1857–1864 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Leskinen, J., Neri, F., Neittaanmäki, P. (2009). Memetic Variation Local Search vs. Life-Time Learning in Electrical Impedance Tomography. In: Giacobini, M., et al. Applications of Evolutionary Computing. EvoWorkshops 2009. Lecture Notes in Computer Science, vol 5484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01129-0_71

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01129-0_71

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01128-3

  • Online ISBN: 978-3-642-01129-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics