Abstract
In this article, various metaheuristics for a numerical optimization problem with application to Electric Impedance Tomography are tested and compared. The experimental setup is composed of a real valued Genetic Algorithm, the Differential Evolution, a self adaptive Differential Evolution recently proposed in literature, and two novel Memetic Algorithms designed for the problem under study. The two proposed algorithms employ different algorithmic philosophies in the field of Memetic Computing. The first algorithm integrates a local search into the operations of the offspring generation, while the second algorithm applies a local search to individuals already generated in the spirit of life-time learning. Numerical results show that the fitness landscape and difficulty of the optimization problem heavily depends on the geometrical configuration, as well the proposed Memetic Algorithms seem to be more promising when the geometrical conditions make the problem harder to solve.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Henderson, R., Webster, J.: An impedance camera for spatially specific measurements of the thorax. IEEE Trans. of Biom. Eng. 25, 250–254 (1978)
Vauhkonen, M., Vadász, D., Karjalainen, P.A., Somersalo, E., Kaipio, J.P.: Tikhonov regularization and prior information in electrical impedance tomography. IEEE Trans. on Medical Imaging 17, 285–293 (1998)
Neittaanmäki, P., Rudnicki, M., Savini, A.: Inverse Problems and Optimal Design in Electricity and Magnetism. Oxford University Press, Oxford (1996)
Calderón, A.P.: On an inverse boundary value problem. Computational and Applied Mathematics 25(2–3), 133–138 (2006)
Uhlmann, G.: Developments in inverse problems since Calderón’s foundational paper. In: Christ, M.E., Kenig, C.E. (eds.) Harmonic Analysis and Partial Differential Equations, ch. 19. University of Chicago (1999)
Cheney, M., Isaacson, D., Newell, J., Simske, S., Goble, J.: NOSER: An algorithm for solving the inverse conductivity problem. IJIST 2, 66–75 (2005)
Cheng, K.-S., Chen, B.-H., Tong, H.-S.: Electrical impedance image reconstruction using the genetic algorithm. In: Proc. of 18th Ann. Int. Conf. IEEE Eng. in Med. and Bio. Soc., pp. 768–769 (1996)
Carosio, G., Rolnik, V., Seleghim, P.J.: Improving efficiency in electrical impedance tomography problem by hybrid parallel genetic algorithm and a priori information. Journal of Computational Physics 173, 433–454 (2001)
Olmi, R., Bini, M.: A genetic algorithm approach to image reconstruction in electrical impedance tomography. IEEE Trans. EC 4(1), 83–88 (2000)
Li, Y., Rao, L., He, R., Xu, G., Wu, Q., Yan, W., Dong, G., Yang, Q.: A novel combination method of electrical impedance tomography inverse problem for brain imaging. IEEE Trans. Magnetics 41, 1848–1851 (2005)
Kononova, A.V., Ingham, D.B., Pourkashanian, M.: Simple scheduled memetic algorithm for inverse problems in higher dimensions: Application to chemical kinetics. In: Proc. of the IEEE WCCI, pp. 3906–3913 (2008)
Lozano, M., Herrera, F., Krasnogor, N., Molina, D.: Real-coded memetic algorithms with crossover hill-climbing. ECJ 12(3), 273–302 (2004)
Vauhkonen, M., Kaipio, J.P., Somersalo, E., Karjalainen, P.A.: Electrical impedance tomography with basis constrains. Inv. Pr. 13, 523–530 (1997)
Cheney, M., Isaacson, D., Newell, J.: Electrical impedance tomography. SIAM review 14, 85–101 (1999)
Kaipio, J., Somersalo, E.: Statistical inverse problems: Discretization, model reduction and inverse crimes. JCAM 198(2), 493–504 (2007)
Brest, J., Greiner, S., Bošković, B., Mernik, M., Žumer, V.: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems. IEEE Trans. EC 10(6), 646–657 (2006)
Biggs, M.: Constrained minimization using recursive quadratic programming. In: Dixon, L., Szergo, G. (eds.) Towards Global Optimization, pp. 341–349 (1975)
Nelder, A., Mead, R.: A simplex method for function optimization. Computation Journal 7, 308–313 (1965)
Ong, Y.S., Keane, A.J.: Meta-lamarkian learning in memetic algorithms. IEEE Trans. on EC 8(2), 99–110 (2004)
Caponio, A., Cascella, G.L., Neri, F., Salvatore, N., Sumner, M.: A fast adaptive memetic algorithm for on-line and off-line control design of PMSM drives. IEEE Trans. on SMC-B 37(1), 28–41 (2007)
Eshelman, L.J., Schaffer, J.D.: Real-coded genetic algorithms and interval-schemata. In: Foundations of GAs 2, pp. 187–202. Morgan Kaufmann, San Francisco (1993)
Zielinski, K., Weitkemper, P., Laur, R., Kammeyer, K.-D.: Parameter study for differential evolution using a power allocation problem including interference cancellation. In: Proc. of the IEEE CEC, pp. 1857–1864 (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2009 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Leskinen, J., Neri, F., Neittaanmäki, P. (2009). Memetic Variation Local Search vs. Life-Time Learning in Electrical Impedance Tomography. In: Giacobini, M., et al. Applications of Evolutionary Computing. EvoWorkshops 2009. Lecture Notes in Computer Science, vol 5484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01129-0_71
Download citation
DOI: https://doi.org/10.1007/978-3-642-01129-0_71
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-642-01128-3
Online ISBN: 978-3-642-01129-0
eBook Packages: Computer ScienceComputer Science (R0)