Skip to main content

Peer-to-Peer Optimization in Large Unreliable Networks with Branch-and-Bound and Particle Swarms

  • Conference paper
Applications of Evolutionary Computing (EvoWorkshops 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5484))

Included in the following conference series:

Abstract

Decentralized peer-to-peer (P2P) networks (lacking a GRID-style resource management and scheduling infrastructure) are an increasingly important computing platform. So far, little is known about the scaling and reliability of optimization algorithms in P2P environments. In this paper we present empirical results comparing two P2P algorithms for real-valued search spaces in large-scale and unreliable networks. Some interesting, and perhaps counter-intuitive findings are presented: for example, failures in the network can in fact significantly improve performance under some conditions. The two algorithms that are compared are a known distributed particle swarm optimization (PSO) algorithm and a novel P2P branch-and-bound (B&B) algorithm based on interval arithmetic. Although our B&B algorithm is not a black-box heuristic, the PSO algorithm is competitive in certain cases, in particular, in larger networks. Comparing two rather different paradigms for solving the same problem gives a better characterization of the limits and possibilities of optimization in P2P networks.

Full length version at http://eprints.biblio.unitn.it/archive/00001541/ . This work was supported by the European Space Agency through Ariadna Project “Gossip-based strategies in global optimization” (21257/07/NL/CB). M. Jelasity was supported by the Bolyai Scholarship of the Hungarian Academy of Sciences. B. Bánhelyi was supported by the Ferenc Deák Scholarship No. DFÖ 19/2007, Aktion Österreich-Ungarn 70öu1, and OTKA T 048377.

This work was partially supported by the Future & Emerging Technologies unit of the European Commission through Project CASCADAS (IST-027807).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kermarrec, A.M., van Steen, M. (eds.): ACM SIGOPS Operating Systems Review 41 (October 2007); Special issue on Gossip-Based Networking

    Google Scholar 

  2. Biazzini, M., Montresor, A., Brunato, M.: Towards a decentralized architecture for optimization. In: Proc. of IEEE IPDPS, Miami, FL, USA (April 2008)

    Google Scholar 

  3. Wickramasinghe, W.R.M.U.K., van Steen, M., Eiben, A.E.: Peer-to-peer evolutionary algorithms with adaptive autonomous selection. In: Proc. of GECCO, pp. 1460–1467. ACM Press, New York (2007)

    Google Scholar 

  4. Laredo, J.L.J., Eiben, E.A., van Steen, M., Castillo, P.A., Mora, A.M., Merelo, J.J.: P2P evolutionary algorithms: A suitable approach for tackling large instances in hard optimization problems. In: Luque, E., Margalef, T., Benítez, D. (eds.) Euro-Par 2008. LNCS, vol. 5168, pp. 622–631. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  5. Jelasity, M., Montresor, A., Babaoglu, O.: A modular paradigm for building self-organizing peer-to-peer applications. In: Di Marzo Serugendo, G., Karageorgos, A., Rana, O.F., Zambonelli, F. (eds.) ESOA 2003. LNCS (LNAI), vol. 2977, pp. 265–282. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  6. Bendjoudi, A., Melab, N., Talbi, E.G.: A parallel P2P branch-and-bound algorithm for computational grids. In: Proc. of IEEE CCGRID, Rio de Janeiro, Brazil, pp. 749–754 (2007)

    Google Scholar 

  7. Jelasity, M., Voulgaris, S., Guerraoui, R., Kermarrec, A.M., van Steen, M.: Gossip-based peer sampling. ACM Transactions on Computer Systems 25(3), 8 (2007)

    Article  Google Scholar 

  8. Talbi, E.G. (ed.): Parallel Combinatorial Optimization. Wiley, Chichester (2006)

    Google Scholar 

  9. Casado, L.G., Martinez, J.A., Garcia, I., Hendrix, E.M.T.: Branch-and-bound interval global optimization on shared memory multiprocessors. Optimization Methods and Software 23(5), 689–701 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ratschek, H., Rokne, J.: Interval methods. In: Horst, R., Pardalos, P.M. (eds.) Handbook of Global Optimization. Kluwer, Dordrecht (1995)

    Google Scholar 

  11. PeerSim, http://peersim.sourceforge.net/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bánhelyi, B., Biazzini, M., Montresor, A., Jelasity, M. (2009). Peer-to-Peer Optimization in Large Unreliable Networks with Branch-and-Bound and Particle Swarms . In: Giacobini, M., et al. Applications of Evolutionary Computing. EvoWorkshops 2009. Lecture Notes in Computer Science, vol 5484. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01129-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01129-0_10

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01128-3

  • Online ISBN: 978-3-642-01129-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics