Abstract
We propose in this article a unified framework for certificate and compilation for QBF. We provide a search-based algorithm to compute a certificate for the validity of a QBF and a search-based algorithm to compile a valid QBF in our unified framework.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Ayari, A., Basin, D.: Qubos: Deciding quantified boolean logic using propositional satisfiability solvers. In: Aagaard, M.D., O’Leary, J.W. (eds.) FMCAD 2002. LNCS, vol. 2517, pp. 187–201. Springer, Heidelberg (2002)
Benedetti, M.: Evaluating QBFs via Symbolic Skolemization. In: Baader, F., Voronkov, A. (eds.) LPAR 2004. LNCS, vol. 3452, pp. 285–300. Springer, Heidelberg (2005)
Benedetti, M.: Extracting certificates from quantified boolean formulas. In: Proceedings of 9th International Joint Conference on Artificial Intelligence (IJCAI 2005), pp. 47–53 (2005)
Benedetti, M.: skizzo: a suite to evaluate and certify QBFs. In: Nieuwenhuis, R. (ed.) CADE 2005. LNCS, vol. 3632, pp. 369–376. Springer, Heidelberg (2005)
Benedetti, M., Mangassarian, H.: Experience and perspectives in qbf-based formal verification. Journal on Satisfiability, Boolean Modeling and Computation (to appear, 2008)
Biere, A.: Resolve and expand. In: Hoos, H., Mitchell, D.G. (eds.) SAT 2004. LNCS, vol. 3542, pp. 59–70. Springer, Heidelberg (2005)
Bordeaux, L.: Boolean and interval propagation for quantified constraints. In: First International Workshop on Quantification in Constraint Programming (2005)
Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 35(8), 677–691 (1986)
Büning, H.K., Karpinski, M., Flögel, A.: Resolution for quantified boolean formulas. Information and Computation 117(1), 12–18 (1995)
Büning, H.K., Subramani, K., Zhao, X.: Boolean functions as models for quantified boolean formulas. Journal of Automated Reasoning 39(1), 49–75 (2007)
Cadoli, M., Schaerf, M., Giovanardi, A., Giovanardi, M.: An algorithm to evaluate quantified boolean formulae and its experimental evaluation. Journal of Automated Reasoning 28(2), 101–142 (2002)
Coste-Marquis, S., Le Berre, D., Letombe, F., Marquis, P.: Propositional fragments for knowledge compilation and quantified boolean formulae. In: Proceedings of the 20th National Conference on Artificial Intelligence (AAAI 2005), pp. 288–293 (2005)
Coste-Marquis, S., Fargier, H., Lang, J., Le Berre, D., Marquis, P.: Representing policies for quantified boolean formulae. In: Proceedings of the 10th International Conference on Principles of Knowledge Representation and Reasoning (KR 2006), pp. 286–296 (2006)
Darwiche, A., Marquis, P.: A knowledge compilation map. Journal of Artificial Intelligence Research 17, 229–264 (2002)
Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Communication of the ACM 5 (1962)
Fargier, H., Marquis, P.: On the use of partially ordered decision graphs in knowledge compilation and quantified boolean formulae. In: AAAI (2006)
Garey, M.R., Johnson, D.S.: Computers and Intractability. A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., New York (1990)
Giunchiglia, E., Narizzano, M., Tacchella, A.: Clause/term resolution and learning in the evaluation of quantified boolean formulas. Journal of Artificial Intelligence Research 26, 371–416 (2006)
Bacchus, F., Samulowitz, H.: Using SAT in QBF. In: van Beek, P. (ed.) CP 2005. LNCS, vol. 3709, pp. 578–592. Springer, Heidelberg (2005)
Jussila, T., Biere, A., Sinz, C., Kröning, D., Wintersteiger, C.: A first step towards a unified proof checker for QBF. In: Marques-Silva, J., Sakallah, K.A. (eds.) SAT 2007. LNCS, vol. 4501, pp. 201–214. Springer, Heidelberg (2007)
Lonsing, F., Biere, A.: Nenofex: Expanding NNF for QBF Solving. In: Kleine Büning, H., Zhao, X. (eds.) SAT 2008. LNCS, vol. SAT 2008, pp. 196–210. Springer, Heidelberg (2008)
Pan, G., Vardi, M.Y.: Symbolic Decision Procedures for QBF. In: International Conference on Principles and Practice of Constraint Programming (2004)
Plaisted, D.A., Biere, A., Zhu, Y.: A satisfiability procedure for quantified Boolean formulae. Discrete Applied Mathematics 130, 291–328 (2003)
Rintanen, J.: Constructing conditional plans by a theorem-prover. Journal of Artificial Intelligence Research 10, 323–352 (1999)
Stéphan, I.: Finding models for quantified boolean formulae. In: First International Workshop on Quantification in Constraint Programming (2005)
Tseitin, G.S.: On the complexity of derivation in propositional calculus. In: Slisenko, A.O. (ed.) Studies in Constructive Mathematics and Mathematical Logic, Part 2, pp. 115–125. Consultants Bureau, New York (1970)
Yu, Y., Malik, S.: Validating the result of a quantified boolean formula (QBF) solver: theory and practice. In: Proceedings of the 2005 conference on Asia South Pacific design automation (ASP-DAC 2005), pp. 1047–1051 (2005)
Zhang, L.: Solving QBF with combined conjunctive and disjunctive normal form. In: National Conference on Artificial Intelligence (AAAI 2006) (2006)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Stéphan, I., Da Mota, B. (2008). A Unified Framework for Certificate and Compilation for QBF. In: Ramanujam, R., Sarukkai, S. (eds) Logic and Its Applications. ICLA 2009. Lecture Notes in Computer Science(), vol 5378. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-92701-3_15
Download citation
DOI: https://doi.org/10.1007/978-3-540-92701-3_15
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-92700-6
Online ISBN: 978-3-540-92701-3
eBook Packages: Computer ScienceComputer Science (R0)