Abstract
Using a characterization of stable models of logic programs P as satisfying valuations of a suitably chosen propositional theory, called the set of reduced defining equations rΦ P , we show that the finitary character of that theory rΦ P is equivalent to a certain continuity property of the Gelfond-Lifschitz operator \({\mathit{GL}}_P\) associated with the program P. The introduction of the formula rΦ P leads to a double-backtracking algorithm for computation of stable models by reduction to satisfiability of suitably chosen propositional theories. This algorithm does not use the reduction via loop-formulas as proposed in [1] or its extension proposed in [2]. Finally, we discuss possible extensions of techniques proposed in this paper to the context of cardinality constraints.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Lin, F., Zhao, Y.: Assat: Computing answer sets of a logic program by sat solvers. In: Proceedings of AAAI 2002, pp. 112–117 (2002)
Ferraris, P., Lee, J., Lifschitz, V.: A generalization of Lin-Zhao theorem. Annals of Mathematics and Artificial Intelligence 47, 79–101 (2006)
Marek, V., Truszczyński, M.: Nonmonotonic Logic. Springer, Heidelberg (1993)
Bonatti, P.: Reasoning with infinite stable models. Artificial Intelligence Journal 156, 75–111 (2004)
Milnikel, R.: Sequent calculi for skeptical reasoning in predicate default logic and other nonmonotonic systems. Annals of Mathematics and Artificial Intelligence 44, 1–34 (2005)
Lifschitz, V.: Foundations of logic programming. In: Principles of Knowledge Representation, pp. 69–127. CSLI Publications (1996)
Bondarenko, A., Toni, F., Kowalski, R.: An assumption-based framework for non-monotonic reasoning. In: Proceedings of LPNMR 1993, pp. 171–189. MIT Press, Cambridge (1993)
Marek, W., Nerode, A., Remmel, J.: Nonmonotonic rule systems I. Annals of Mathematics and Artificial Intelligence 1, 241–273 (1990)
Marek, W., Nerode, A., Remmel, J.: Nonmonotonic rule systems II. Annals of Mathematics and Artificial Intelligence 5, 229–264 (1992)
Marek, W., Nerode, A., Remmel, J.: A context for belief revision: Normal logic programs. In: Proceedings, Workshop on Defeasible Reasoning and Constraint Solving, International Logic Programming Symposium (1991)
Marek, W., Nerode, A., Remmel, J.: How complicated is the set of stable models of a logic program? Annals of Pure and Applied Logic 56, 119–136 (1992)
Marek, W., Nerode, A., Remmel, J.: The stable models of predicate logic programs. Journal of Logic Programming 21, 129–154 (1994)
Marek, W., Nerode, A., Remmel, J.: Context for belief revision: Forward chaining-normal nonmonotonic rule systems. Annals of Pure and Applied Logic 67, 269–324 (1994)
Gebser, M., Schaub, T.: Generic tableaux for answer set programming. In: Proceedings of International Conference on Logic Programming, 2007, pp. 119–133 (2007)
Järvisalo, M., Oikarinen, E.: Extended asp tableaux and rule redundancy in normal logic programs. In: Dahl, V., Niemelä, I. (eds.) ICLP 2007. LNCS, vol. 4670, pp. 134–148. Springer, Heidelberg (2007)
Gelfond, M., Lifschitz, V.: The stable model semantics for logic programming. In: Proceedings of the International Joint Conference and Symposium on Logic Programming, pp. 1070–1080 (1988)
Lloyd, J.: Foundations of Logic Programming. Springer, Heidelberg (1989)
Apt, K.: Logic programming. In: van Leeuven, J. (ed.) Handbook of Theoretical Computer Science, pp. 493–574. MIT Press, Cambridge (1990)
Dung, P., Kanchanasut, K.: On the generalized predicate completion of non-Horn programs. In: Logic programming. Proceedings of the North American Conference (1989)
Clark, K.: Negation as failure. In: Minker, J., Gallaire, H. (eds.) Logic and data bases, pp. 293–322. Plenum Press (1978)
Doets, K.: From Logic to Logic Programming. MIT Press, Cambridge (1994)
Jonsson, B., Tarski, A.: Boolean algebras with operators. American Journal of Mathematics 73, 891–939 (1951)
Giunchiglia, E., Lierler, Y., Maratea, M.: Answer set programming based on propositional satisfiability. Journal of Automated Reasoning 36, 345–377 (2006)
Lifschitz, V., Razborov, A.: Why are there so many loop formulas. Annals of Mathematics and Artificial Intelligence 7, 261–268 (2006)
Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model semantics. Artificial Intelligence Journal 138, 181–234 (2002)
Marek, V., Remmel, J.: Set constraints in logic programming. In: Lifschitz, V., Niemelä, I. (eds.) LPNMR 2004. LNCS (LNAI), vol. 2923, pp. 154–167. Springer, Heidelberg (2003)
Marek, V., Niemelä, I., Truszczyński, M.: Logic programs with monotone abstract constraint atoms. Theory and Practice of Logic Programming 8, 167–199 (2008)
Liu, L., Truszczyński, M.: Properties of programs with monotone and convex constraints. In: Proceedings of the 20th National Conference on Artificial Intelligence, pp. 701–706 (2005)
Ferraris, P., Lifschitz, V.: Weight constraints as nested expressions. Theory and Practice of Logic Programming 5, 45–74 (2005)
Lifschitz, V., Tang, L., Turner, H.: Nested expressions in logic programs. Annals of Mathematics and Artificial Intelligence 25, 369–389 (1999)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Marek, V.W., Remmel, J.B. (2008). On the Continuity of Gelfond-Lifschitz Operator and Other Applications of Proof-Theory in ASP. In: Garcia de la Banda, M., Pontelli, E. (eds) Logic Programming. ICLP 2008. Lecture Notes in Computer Science, vol 5366. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-89982-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-540-89982-2_25
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-89981-5
Online ISBN: 978-3-540-89982-2
eBook Packages: Computer ScienceComputer Science (R0)