Abstract
The DL-Lite family of tractable description logics lies between the semantic web languages RDFS and OWL Lite. In this paper, we present a probabilistic generalization of the DL-Lite description logics, which is based on Bayesian networks. As an important feature, the new probabilistic description logics allow for flexibly combining terminological and assertional pieces of probabilistic knowledge. We show that the new probabilistic description logics are rich enough to properly extend both the DL-Lite description logics as well as Bayesian networks. We also show that satisfiability checking and query processing in the new probabilistic description logics is reducible to satisfiability checking and query processing in the DL-Lite family. Furthermore, we show that satisfiability checking and answering unions of conjunctive queries in the new logics can be done in LogSpace in the data complexity. For this reason, the new probabilistic description logics are very promising formalisms for data-intensive applications in the Semantic Web involving probabilistic uncertainty.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F. (eds.): The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press, Cambridge (2003)
Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: DL-Lite: Tractable description logics for ontologies. In: Proceedings AAAI 2005, pp. 602–607. AAAI Press/MIT Press (2005)
da Costa, P.C.G., Laskey, K.B.: PR-OWL: A framework for probabilistic ontologies. In: Proceedings FOIS 2006, pp. 237–249. IOS Press, Amsterdam (2006)
da Costa, P.C.G., Laskey, K.B., Laskey, K.J.: PR-OWL: A Bayesian ontology language for the Semantic Web. In: Proceedings URSW 2005, pp. 23–33 (2005)
Dantsin, E., Eiter, T., Gottlob, G., Voronkov, A.: Complexity and expressive power of logic programming. ACM Comput. Surv. 33(3), 374–425 (2001)
d’Amato, C., Staab, S., Fanizzi, N., Esposito, F.: Efficient discovery of services specified in description logics languages. In: Proceedings of the ISWC-2007 Workshop on Service Matchmaking and Resource Retrieval in the Semantic Web (SMR2 2007) (2007)
Ding, Z., Peng, Y.: A probabilistic extension to ontology language OWL. In: Proceedings HICSS 2004 (2004)
Ding, Z., Peng, Y., Pan, R.: BayesOWL: Uncertainty modeling in Semantic Web ontologies. In: Ma, Z. (ed.) Soft Computing in Ontologies and Semantic Web. Studies in Fuzziness and Soft Computing, vol. 204, Springer, Heidelberg (2006)
Fukushige, Y.: Representing probabilistic knowledge in the Semantic Web. In: Proceedings of the W3C Workshop on Semantic Web for Life Sciences, Cambridge, MA, USA (2004)
Lukasiewicz, T., Giugno, R.: P-\(\mathcal{SHOQ}({ D})\): A Probabilistic Extension of \(\mathcal{SHOQ}({ D})\) for probabilistic ontologies in the Semantic Web. In: Flesca, S., Greco, S., Leone, N., Ianni, G. (eds.) JELIA 2002. LNCS (LNAI), vol. 2424, pp. 86–97. Springer, Heidelberg (2002)
Grimm, S., Motik, B., Preist, C.: Variance in e-business service discovery. In: Proceedings of the ISWC 2004 Workshop on Semantic Web Services (2004)
Heinsohn, J.: Probabilistic description logics. In: Proceedings UAI 1994, pp. 311–318. Morgan Kaufmann, San Francisco (1994)
Jaeger, M.: Probabilistic reasoning in terminological logics. In: Proceedings KR 1994, pp. 305–316. Morgan Kaufmann, San Francisco (1994)
Jaeger, M.: Probabilistic role models and the guarded fragment. In: Proc. IPMU 2004, pp. 235–242 (2004); Extended version in Int. J. Uncertain. Fuzz., 14(1), 43–60 (2006)
Jensen, F.V.: Bayesian Networks and Decision Graphs. Springer, Heidelberg (2001)
Klinov, P.: Pronto: A non-monotonic probabilistic description logic reasoner. In: System demo at ESWC 2008 (2008)
Koller, D., Levy, A., Pfeffer, A.: P-Classic: A tractable probabilistic description logic. In: Proceedings AAAI 1997, pp. 390–397. AAAI Press/MIT Press (1997)
Lukasiewicz, T.: Probabilistic deduction with conditional constraints over basic events. J. Artif. Intell. Res. 10, 199–241 (1999)
Lukasiewicz, T.: Probabilistic default reasoning with conditional constraints. Ann. Math. Artif. Intell. 34(1–3), 35–88 (2002)
Lukasiewicz, T.: Expressive probabilistic description logics. Artif. Intell. 172(6/7), 852–883 (2008)
Lukasiewicz, T., Straccia, U.: Managing uncertainty and vagueness in description logics for the Semantic Web. J. Web Sem. (in press)
Mitra, P., Noy, N.F., Jaiswal, A.: OMEN: A probabilistic ontology mapping tool. In: Gil, Y., Motta, E., Benjamins, V.R., Musen, M.A. (eds.) ISWC 2005. LNCS, vol. 3729, pp. 537–547. Springer, Heidelberg (2005)
Nilsson, N.J.: Probabilistic logic. Artif. Intell. 28(1), 71–88 (1986)
Nottelmann, H., Fuhr, N.: Adding probabilities and rules to OWL Lite subsets based on probabilistic Datalog. Int. J. Uncertain. Fuzz. 14(1), 17–42 (2006)
Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan Kaufmann, San Francisco (1988)
Pool, M., Aikin, J.: KEEPER and Protégé: An elicitation environment for Bayesian inference tools. In: Proceedings of the Workshop on Protégé and Reasoning held at the 7th International Protégé Conference (2004)
Smyth, C., Poole, D.: Qualitative probabilistic matching with hierarchical descriptions. In: Proceedings KR 2004, pp. 479–487. AAAI Press, Menlo Park (2004)
Yang, Y., Calmet, J.: OntoBayes: An ontology-driven uncertainty model. In: Proceedings IAWTIC 2005, pp. 457–463. IEEE Computer Society Press, Los Alamitos (2005)
Yelland, P.M.: An alternative combination of Bayesian networks and description logics. In: Proceedings KR 2000, pp. 225–234. Morgan Kaufmann, San Francisco (2000)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
d’Amato, C., Fanizzi, N., Lukasiewicz, T. (2008). Tractable Reasoning with Bayesian Description Logics. In: Greco, S., Lukasiewicz, T. (eds) Scalable Uncertainty Management. SUM 2008. Lecture Notes in Computer Science(), vol 5291. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87993-0_13
Download citation
DOI: https://doi.org/10.1007/978-3-540-87993-0_13
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87992-3
Online ISBN: 978-3-540-87993-0
eBook Packages: Computer ScienceComputer Science (R0)