Abstract
In this paper, the global uniform asymptotic stability is studied for a class of delayed neutral-type neural networks with reaction-diffusion terms. By constructing appropriate Lyapunov-Krasovskii functional and using the linear matrix inequality (LMI) approach, several sufficient conditions are obtained for ensuring the system to be globally uniformly asymptotically stable. A numerical example is given in the end of this paper to demonstrate the effectiveness and applicability of the proposed criteria.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Hopfield, J.: Neurons with Graded Response Have Collective Computational Properties like Those of Two-state Neurons. Proc. Nat. Acad. Sci. USA 81, 3088–3092 (1984)
Arik, S.: Global Asymptotic Stability of a Larger Class of Neural Networks with Constant Time Delay. Phys. Lett. A 311, 504–511 (2003)
Cao, J., Wang, J.: Global Asymptotic Stability of a General Class of Recurrent Neural Networks with Time-varying Delays. IEEE Trans. Circ. Syst. I 50(1), 34–44 (2003)
Cao, J., Wang, J.: Global Exponential Stability and Periodicity of Recurrent Neural Networks with Time Delays. IEEE Trans. Circ. Syst. I 52(5), 925–931 (2005)
Chen, A., Cao, J., Huang, L.: Exponential Stability of BAM Neural Networks with Transmission Delays. Neurocomput. 57, 435–454 (2004)
Xu, S., Chen, T., Lam, J.: Robust H  ∞  Filtering for Uncertain Markovian Jump Systems with Mode-dependent Time Delays. IEEE Trans. Automat. Contr. 48, 900–907 (2003)
Gu, K.: An Integral Inequality in the Stability Problems of Time-delay Systems. In: Proceedings of 39th IEEE CDC, Sydney, Australia, pp. 2805–2810 (2000)
Vidyasagar, M.: Nonliear Systems Analysis, 2nd edn. Englewood Cliffs, New Jersey (1993)
Liao, X., Fu, Y., Gao, J., Zhao, X.: Stability of Hopfield Neural Networks with Reaction-diffusion Terms. Acta Electron. Sinica 28, 78–80 (2002)
Liang, J., Cao, J.: Global Exponential Stability of Reaction-diffusion Recurrent Neural Networks with Time-varying Delays. Phys. Lett. A 314, 434–442 (2003)
Wang, L., Xu, D.: Global Exponential Stability of Reaction-diffusion Hopfield Neural Networks with Time-varying Delays. Science in China E 33, 488–495 (2003)
Pao, C.: Global Asymptotic Stability of Lotka-Volterra Competition Systems with Diffusion and Time Delays. Nonlin. Anal.: RWA 5(1), 91–104 (2004)
Liao, X., Li, J.: Stability in Gilpin-Ayala Competition Models with Diffusion. Nonlin. Anal. 28, 1751–1758 (1997)
Xu, S., Lam, J., Daniel, W.C., Ho, Z.Y.: Delay-dependent Exponential Stability for a Class of Neural Networks with Time Delays. J. Comput. Appl. Math. 183, 16–28 (2005)
Arik, S.: An Analysis of Exponential Stability of Delayed Neural Networks with Time Varying Delays. Neural Networks 17, 1027–1031 (2004)
Song, Q., Zhao, Z., Li, Y.: Global Exponential Stability of BAM Neural Networks with Distributed Delays and Reaction-diffusion Terms. Phys. Lett. A 335, 213–225 (2005)
Jiang, H., Teng, Z.: Global Exponential Stability of Cellular Neural Networks with Time-varying Coefficients and Delays. Neural Networks 17, 1415–1425 (2004)
Curt, W.: Reactive Molecules: the Neutral Reactive Intermediates in Organic Chemistry. Wilay Press, New York (1984)
Kolmanonskii, V., Richard, J.: Stability of Some Linear Systems with Delays. IEEE Trans. Automat. Contr. 44(5), 984–989 (1999)
Hu, G., Di, H.G.: Da: Simple Criteria for Stability of Neutral Systems with Multiple Delays. Int. J. Syst. Sci. 28, 1325–1328 (1997)
Lien, C., Yu, K., Hsieh, J.: Stability Conditions for a Class of Neutral Systems with Multiple Time Delays. J. Math. Anal. Appl. 245, 20–27 (2000)
Fridman, E.: New Lyapunov-Krasovskii Functionals for Stability of Linear Retarded and Neutral Type Systems. Syst. Contr. Lett. 43, 309–319 (2001)
Park, H., Won, S.: Stability Analysis for Neutral Delay-differential Systems. Journal of the Franklin institute 337, l-9 (2000)
Niculescu, S.: Further Remarks on Delay-dependent Stability of Linear Neutral Systems. In: Proceeding of MTNS 2000, Perpignan, France (2000)
Yang, B., Zhu, R., Li, T.: Delay-dependent Stability Criterion for a Class of Neutral Time-delay Systems. In: Proceedings of American Control Conference Denver, Colorado (2003)
Cao, J., Lu, J.: Adaptive Synchronization of Neural Networks with or without Time-varying Delays. Chaos 16 (2006) art. no. 013133
Cao, J., Li, P., Wang, W.: Global Synchronization in Arrays of Delayed Neural Networks with Constant and Delayed Coupling. Phys. Lett. A 353(4), 318–325 (2006)
Zhao, H.: Exponential Stability and Periodic Oscillatory of Bi-directional Associative Memory Neural Network Involving Delays. Neurocomput. 69, 424–448 (2006)
Cao, J.: New Results Concerning Exponential Stability and Periodic Solutions of Delayed Cellular Neural Networks. Phys. Lett. A 307, 136–147 (2003)
Cao, J., Dong, M.: Exponential Stability of Delayed Bi-directional Associative Memory Networks. Appl. Math. Comput. 135, 105–112 (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2008 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Qiu, J., Jin, Y., Zheng, Q. (2008). Delay-Dependent Global Asymptotic Stability in Neutral-Type Delayed Neural Networks with Reaction-Diffusion Terms. In: Sun, F., Zhang, J., Tan, Y., Cao, J., Yu, W. (eds) Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, vol 5263. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-87732-5_18
Download citation
DOI: https://doi.org/10.1007/978-3-540-87732-5_18
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-87731-8
Online ISBN: 978-3-540-87732-5
eBook Packages: Computer ScienceComputer Science (R0)