Skip to main content

Solving the Oil Spill Problem Using a Combination of CBR and a Summarization of SOM Ensembles

  • Conference paper
International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008)

Part of the book series: Advances in Soft Computing ((AINSC,volume 50))

  • 1325 Accesses

Abstract

In this paper, a forecasting system is presented. It predicts the presence of oil slicks in a certain area of the open sea after an oil spill using Case-Based Reasoning methodology. CBR systems are designed to generate solutions to a certain problem by analysing historical data where previous solutions are stored. The system explained includes a novel network for data classification and retrieval. Such network works as a summarization algorithm for the results of an ensemble of Self-Organizing Maps. This algorithm, called Weighted Voting Superposition (WeVoS), is aimed to achieve the lowest topographic error in the map. The WeVoS-CBR system has been able to precisely predict the presence of oil slicks in the open sea areas of the north west of the Galician coast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Palenzuela, J.M.T., Vilas, L.G., Cuadrado, M.S.: Use of ASAR images to study the evolution of the Prestige oil spill off the Galician coast. International Journal of Remote Sensing 27(10), 1931–1950 (2006)

    Article  Google Scholar 

  2. Aamodt, A.: A Knowledge-Intensive, Integrated Approach to Problem Solving and Sustained Learning, Knowledge Engineering and Image Processing Group. University of Trondheim (1991)

    Google Scholar 

  3. Kohonen, T.: The self-organizing map. Neurocomputing 21(1-3), 1–6 (1998)

    Article  MATH  Google Scholar 

  4. Pölzlbauer, G.: Survey and Comparison of Quality Measures for Self-Organizing Maps. In: Rauber, J.P. (ed.) Fifth Workshop on Data Analysis (WDA 2004), pp. 67–82. Elfa Academic Press (2004)

    Google Scholar 

  5. Corchado, J.M., Fdez-Riverola, F.: FSfRT: Forecasting System for Red Tides. Applied Intelligence 21, 251–264 (2004)

    Article  Google Scholar 

  6. Karayiannis, N.B., Mi, G.W.: Growing radial basis neural networks: merging supervised andunsupervised learning with network growth techniques. IEEE Transactions on Neural Networks 8(6), 1492–1506 (1997)

    Article  Google Scholar 

  7. Sørmo, F., Cassens, J., Aamodt, A.: Explanation in Case-Based Reasoning–Perspectives and Goals. Artificial Intelligence Review 24(2), 109–143 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Juan M. Corchado Sara Rodríguez James Llinas José M. Molina

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Mata, A., Corchado, E., Baruque, B. (2009). Solving the Oil Spill Problem Using a Combination of CBR and a Summarization of SOM Ensembles. In: Corchado, J.M., Rodríguez, S., Llinas, J., Molina, J.M. (eds) International Symposium on Distributed Computing and Artificial Intelligence 2008 (DCAI 2008). Advances in Soft Computing, vol 50. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-85863-8_78

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-85863-8_78

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-85862-1

  • Online ISBN: 978-3-540-85863-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics