Abstract
We introduce relational variants of neural topographic maps including the self-organizing map and neural gas, which allow clustering and visualization of data given as pairwise similarities or dissimilarities with continuous prototype updates. It is assumed that the (dis-)similarity matrix originates from Euclidean distances, however, the underlying embedding of points is unknown. Batch optimization schemes for topographic map formations are formulated in terms of the given (dis-)similarities and convergence is guaranteed, thus providing a way to transfer batch optimization to relational data.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Conan-Guez, B., Rossi, F., El Golli, A.: A fast algorithm for the self-organizing map on dissimilarity data. In: Workshop on Self-Organizing Maps, pp. 561–568 (2005)
Cottrell, M., Hammer, B., Hasenfuss, A., Villmann, T.: Batch and median neural gas. Neural Networks 19, 762–771 (2006)
Graepel, T., Herbrich, R., Bollmann-Sdorra, P., Obermayer, K.: Classification on pairwise proximity data. In: Jordan, M.I., Kearns, M.J., Solla, S.A. (eds.) NIPS, vol. 11, pp. 438–444. MIT Press, Cambridge (1999)
Graepel, T., Obermayer, K.: A stochastic self-organizing map for proximity data. Neural Computation 11, 139–155 (1999)
Hammer, B., Hasenfuss, A., Schleif, F.-M., Villmann, T.: Supervised median neural gas. In: Dagli, C., Buczak, A., Enke, D., Embrechts, A., Ersoy, O. (eds.) Intelligent Engineering Systems Through Artificial Neural Networks 16. Smart Engineering System Design, pp. 623–633. ASME Press (2006)
Hammer, B., Hasenfuss, A., Schleif, F.-M., Villmann, T.: Supervised batch neural gas. In: Schwenker, F. (ed.) Proceedings of Conference Artificial Neural Networks in Pattern Recognition (ANNPR), pp. 33–45. Springer, Heidelberg (2006)
Hasenfuss, A., Hammer, B., Schleif, F.-M., Villmann, T.: Neural gas clustering for dissimilarity data with continuous prototypes. In: Sandoval, F., Prieto, A., Cabestany, J., Graña, M. (eds.) IWANN 2007. LNCS, vol. 4507, Springer, Heidelberg (2007)
Hammer, B., Hasenfuss, A., Villmann, T.: Magnification control for batch neural gas. Neurocomputing 70, 1225–1234 (2007)
Hammer, B., Micheli, A., Sperduti, A., Strickert, M.: Recursive self-organizing network models. Neural Networks 17(8-9), 1061–1086 (2004)
Haasdonk, B., Bahlmann, C.: Learning with distance substitution kernels. In: Rasmussen, C.E., Bülthoff, H.H., Schölkopf, B., Giese, M.A. (eds.) Pattern Recognition. LNCS, vol. 3175, Springer, Heidelberg (2004)
Hammer, B., Hasenfuss, A.: Relational Topographic Maps, Technical Report IfI-07-01, Clausthal University of Technology, Institute of Informatics (April 2007)
Hathaway, R.J., Bezdek, J.C.: Nerf c-means: Non-euclidean relational fuzzy clustering. Pattern Recognition 27(3), 429–437 (1994)
Hathaway, R.J., Davenport, J.W., Bezdek, J.C.: Relational duals of the c-means algorithms. Pattern Recognition 22, 205–212 (1989)
Heskes, T.: Self-organizing maps, vector quantization, and mixture modeling. IEEE Transactions on Neural Networks 12, 1299–1305 (2001)
Juan, A., Vidal, E.: On the use of normalized edit distances and an efficient k-NN search technique (k-AESA) for fast and accurate string classification. In: ICPR 2000, vol. 2, pp. 680–683 (2000)
Kohonen, T.: Self-Organizing Maps. Springer, Heidelberg (1995)
Kohonen, T., Somervuo, P.: How to make large self-organizing maps for nonvectorial data. Neural Networks 15, 945–952 (2002)
Kruskal, J.B.: Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–27 (1964)
Lundsteen, C., Phillip, J., Granum, E.: Quantitative analysis of 6985 digitized trypsin G-banded human metaphase chromosomes. Clinical Genetics 18, 355–370 (1980)
Martinetz, T., Berkovich, S.G., Schulten, K.J.: Neural-gasrq network for vector quantization and its application to time-series prediction. IEEE Transactions on Neural Networks 4, 558–569 (1993)
Martinetz, T., Schulten, K.: Topology representing networks. Neural Networks 7, 507–522 (1994)
Mevissen, H., Vingron, M.: Quantifying the local reliability of a sequence alignment. Protein Engineering 9, 127–132 (1996)
Neuhaus, M., Bunke, H.: Edit distance based kernel functions for structural pattern classification. Pattern Recognition 39(10), 1852–1863 (2006)
Qin, A.K., Suganthan, P.N.: Kernel neural gas algorithms with application to cluster analysis. In: ICPR 2004, vol. 4, pp. 617–620 (2004)
Ripley, B.D.: Pattern Recognition and Neural Networks, Cambridge (1996)
Sammon Jr., J.W.: A nonlinear mapping for data structure analysis. IEEE Transactions on Computers 18, 401–409 (1969)
Schölkopf, B.: The kernel trick for distances, Microsoft TR 2000-51 (2000)
Seo, S., Obermayer, K.: Self-organizing maps and clustering methods for matrix data. Neural Networks 17, 1211–1230 (2004)
Tino, P., Kaban, A., Sun, Y.: A generative probabilistic approach to visualizing sets of symbolic sequences. In: Kohavi, R., Gehrke, J., DuMouchel, W., Ghosh, J. (eds.) Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining - KDD-2004, pp. 701–706. ACM Press, New York (2004)
Villmann, T., Hammer, B., Schleif, F., Geweniger, T., Herrmann, W.: Fuzzy classification by fuzzy labeled neural gas. Neural Networks 19, 772–779 (2006)
Yin, H.: On the equivalence between kernel self-organising maps and self-organising mixture density network. Neural Networks 19(6), 780–784 (2006)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Hasenfuss, A., Hammer, B. (2007). Relational Topographic Maps. In: R. Berthold, M., Shawe-Taylor, J., Lavrač, N. (eds) Advances in Intelligent Data Analysis VII. IDA 2007. Lecture Notes in Computer Science, vol 4723. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74825-0_9
Download citation
DOI: https://doi.org/10.1007/978-3-540-74825-0_9
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-74824-3
Online ISBN: 978-3-540-74825-0
eBook Packages: Computer ScienceComputer Science (R0)