Skip to main content

Verifying Nonlinear Real Formulas Via Sums of Squares

  • Conference paper
Theorem Proving in Higher Order Logics (TPHOLs 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4732))

Included in the following conference series:

  • 595 Accesses

Abstract

Techniques based on sums of squares appear promising as a general approach to the universal theory of reals with addition and multiplication, i.e. verifying Boolean combinations of equations and inequalities. A particularly attractive feature is that suitable ‘sum of squares’ certificates can be found by sophisticated numerical methods such as semidefinite programming, yet the actual verification of the resulting proof is straightforward even in a highly foundational theorem prover. We will describe our experience with an implementation in HOL Light, noting some successes as well as difficulties. We also describe a new approach to the univariate case that can handle some otherwise difficult examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Akbarpour, B., Paulson, L.C.: Towards automatic proofs of inequalities involving elementary functions. In: Cook, B., Sebastiani, R. (eds.) Proceedings of PDPAR 2006: Pragmatics of Decision Procedures in Automated Reasoning, pp. 27–37 (2006)

    Google Scholar 

  2. Akgül, M.: Topics in relaxation and ellipsoidal methods. Research notes in mathematics, vol. 97. Pitman (1984)

    Google Scholar 

  3. Artin, E.: Über die Zerlegung definiter Funktionen in Quadrate. Hamburg Abhandlung 5, 100–115 (1927)

    Google Scholar 

  4. Avigad, J., Friedman, H.: Combining decision procedures for the reals. Logical Methods in Computer Science (to appear), available online at http://arxiv.org/abs/cs.LO/0601134

  5. Basu, S.: A constructive algorithm for 2-D spectral factorization with rational spectral factors. IEEE Transactions on Circuits and Systems–I: Fundamental Theory and Applications 47, 1309–1318 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Borchers, B.: CSDP: A C library for semidefinite programming. Optimization Methods and Software 11, 613–623 (1999)

    Article  MathSciNet  Google Scholar 

  7. Caviness, B.F., Johnson, J.R. (eds.): Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and monographs in symbolic computation. Springer, Heidelberg (1998)

    MATH  Google Scholar 

  8. Cohen, P.J.: Decision procedures for real and p-adic fields. Communications in Pure and Applied Mathematics 22, 131–151 (1969)

    Article  MATH  Google Scholar 

  9. Collins, G.E.: Quantifier elimination for real closed fields by cylindrical algebraic decomposition. In: Brakhage, H. (ed.) Automata Theory and Formal Languages. LNCS, vol. 33, pp. 134–183. Springer, Heidelberg (1975)

    Google Scholar 

  10. Ferrar, W.L.: Algebra: a text-book of determinants, matrices, and algebraic forms, 2nd edn. Oxford University Press, Oxford (1957)

    MATH  Google Scholar 

  11. Grotschel, M., Lovsz, L., Schrijver, A.: Geometric algorithms and combinatorial optimization. Springer, Heidelberg (1993)

    Google Scholar 

  12. Guangxing, Z., Xiaoning, Z.: An effective decision method for semidefinite polynomials. Journal of Symbolic Computation 37, 83–99 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  13. Harrison, J.: Verifying the accuracy of polynomial approximations in HOL. In: Gunter, E.L., Felty, A.P. (eds.) TPHOLs 1997. LNCS, vol. 1275, pp. 137–152. Springer, Heidelberg (1997)

    Chapter  Google Scholar 

  14. Harrison, J.: Formal verification of floating point trigonometric functions. In: Johnson, S.D., Hunt Jr., W.A. (eds.) FMCAD 2000. LNCS, vol. 1954, pp. 217–233. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  15. Harrison, J., Théry, L.: A sceptic’s approach to combining HOL and Maple. Journal of Automated Reasoning 21, 279–294 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hilbert, D.: Über die Darstellung definiter Formen als Summe von Formenquadraten. Mathematische Annalen 32, 342–350 (1888)

    Article  MathSciNet  Google Scholar 

  17. Hörmander, L. (ed.): The Analysis of Linear Partial Differential Operators II. Grundlehren der mathematischen Wissenschaften, vol. 257. Springer, Heidelberg (1983)

    MATH  Google Scholar 

  18. Hunt, W.A., Krug, R.B., Moore, J.: Linear and nonlinear arithmetic in ACL2. In: Geist, D., Tronci, E. (eds.) CHARME 2003. LNCS, vol. 2860, pp. 319–333. Springer, Heidelberg (2003)

    Google Scholar 

  19. Jacobson, N.: Basic Algebra II, 2nd edn. W. H. Freeman, New York (1989)

    MATH  Google Scholar 

  20. Khachian, L.G.: A polynomial algorithm in linear programming. Soviet Mathematics Doklady 20, 191–194 (1979)

    Google Scholar 

  21. Landau, E.: Über die Darstellung definiter Funktionen durch Quadrate. Mathematischen Annalen 62, 272–285 (1906)

    Article  MATH  Google Scholar 

  22. Lombardi, H.: Effective real nullstellensatz and variants. In: Mora, T., Traverso, C. (eds.) Proceedings of the MEGA-90 Symposium on Effective Methods in Algebraic Geometry, Castiglioncello, Livorno, Italy. Progress in Mathematics, vol. 94, pp. 263–288. Birkhäuser, Basel (1990)

    Google Scholar 

  23. Mahboubi, A., Pottier, L.: Elimination des quantificateurs sur les réels en Coq. In: Journées Francophones des Langages Applicatifs (JFLA) (2002), available on the Web from http://pauillac.inria.fr/jfla/2002/actes/index.html08-mahboubi.ps

  24. McLaughlin, S., Harrison, J.: A proof-producing decision procedure for real arithmetic. In: Nieuwenhuis, R. (ed.) Automated Deduction – CADE-20. LNCS (LNAI), vol. 3632, pp. 295–314. Springer, Heidelberg (2005)

    Google Scholar 

  25. Motzkin, T.S.: The arithmetic-geometric inequality. In: Shisha, O. (ed.) Inequalities, Academic Press, London (1967)

    Google Scholar 

  26. Parrilo, P.A.: Semidefinite programming relaxations for semialgebraic problems. Mathematical Programming 96, 293–320 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Pourchet, Y.: Sur la répresentation en somme de carrés des polynômes a une indeterminée sur un corps de nombres algébraiques. Acta Arithmetica 19, 89–109 (1971)

    MATH  MathSciNet  Google Scholar 

  28. Prestel, A., Dalzell, C.N.: Positive Polynomials: From Hilbert’s 17th Problem to Real Algebra. Springer monographs in mathematics. Springer, Heidelberg (2001)

    MATH  Google Scholar 

  29. Rockafellar, R.T.: Lagrange multipliers and optimality. SIAM review 35, 183–283 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  30. Seidenberg, A.: A new decision method for elementary algebra. Annals of Mathematics 60, 365–374 (1954)

    Article  MathSciNet  Google Scholar 

  31. Strang, G.: Linear Algebra and its Applications, 3rd edn. Brooks/Cole (1988)

    Google Scholar 

  32. Tarski, A.: A Decision Method for Elementary Algebra and Geometry. University of California Press (1951), Previous version published as a technical report by the RAND Corporation, J.C.C. McKinsey (1948) (reprinted in [7], pp. 24–84)

    Google Scholar 

  33. Tiwari, A.: An algebraic approach to the satisfiability of nonlinear constraints. In: Ong, L. (ed.) CSL 2005. LNCS, vol. 3634, pp. 248–262. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  34. Weil, A.: Number Theory: An approach through history from Hammurapi to Legendre. Birkhäuser, Basel (1983)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Klaus Schneider Jens Brandt

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Harrison, J. (2007). Verifying Nonlinear Real Formulas Via Sums of Squares. In: Schneider, K., Brandt, J. (eds) Theorem Proving in Higher Order Logics. TPHOLs 2007. Lecture Notes in Computer Science, vol 4732. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74591-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74591-4_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74590-7

  • Online ISBN: 978-3-540-74591-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics