Abstract
Analysis and visualization of high-dimensional clinical proteomic spectra obtained from mass spectrometric measurements is a complicated issue. We present a wavelet based preprocessing combined with an unsupervised and supervised analysis by Self-Organizing Maps and a fuzzy variant thereof. This leads to an optimal encoding and a robust classifier incorporating the possibility of fuzzy labels.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Villanueva, J., Philip, J., Entenberg, D., C.C., et al.: Serum peptide profiling by magnetic particle-assisted, automated sample processing and maldi-tof mass spectrometry. Anal. Chem. 76, 1560–1570 (2004)
Ketterlinus, R., Hsieh, S.Y., Teng, S.H., Lee, H., Pusch, W.: Fishing for biomarkers: analyzing mass spectrometry data with the new clinprotools software. Bio techniques 38(6), 37–40 (2005)
Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Berlin, Heidelberg, (2nd Ext. Ed. 1997) (1995)
Schleif, F.M., Elssner, T., Kostrzewa, M., Villmann, T., Hammer, B.: Analysis and visualization of proteomic data by fuzzy labeled self organizing maps. In: Proc. of CBMS 2006, pp. 919–924 (2006)
Haykin, S.: Neural Networks. In: A Comp. Found. Macmillan, New York (1994)
Waagen, D., Cassabaum, M., Scott, C., Schmitt, H.: Exploring alternative wavelet base selection techniques with application to high resolution radar classification. In: ISIF 2003. Proc. of the 6th Int. Conf. on Inf. Fusion, pp. 1078–1085. IEEE Press, New York (2003)
Louis, A.K., Maaß, P.A.R.: Wavelets: Theory and Applications. Wiley, Chichester (1998)
Leung, A., Chau, F., Gao, J.: A review on applications of wavelet transform techniques in chemical analysis: 1989-1997. Chem. and Int. Lab. Sys. 43(1), 165–184(20) (1998)
Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45(5), 485–560 (1992)
Heskes, T.: Energy functions for self-organizing maps. In: Oja, E., Kaski, S. (eds.) Kohonen Maps, pp. 303–316. Elsevier, Amsterdam (1999)
Villmann, T., Schleif, F.M., Hammer, B.: Comparison of relevance learning vector quantization with other metric adaptive classification methods. Neural Networks 19(15), 610–622 (2005)
Villmann, T., Der, R., Herrmann, M., Martinetz, T.: Topology Preservation in Self–Organizing Feature Maps: Exact Definition and Measurement. IEEE Transactions on Neural Networks 8(2), 256–266 (1997)
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 2007 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Schleif, FM., Villmann, T., Hammer, B. (2007). Analysis of Proteomic Spectral Data by Multi Resolution Analysis and Self-Organizing Maps. In: Masulli, F., Mitra, S., Pasi, G. (eds) Applications of Fuzzy Sets Theory. WILF 2007. Lecture Notes in Computer Science(), vol 4578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73400-0_72
Download citation
DOI: https://doi.org/10.1007/978-3-540-73400-0_72
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-73399-7
Online ISBN: 978-3-540-73400-0
eBook Packages: Computer ScienceComputer Science (R0)