Skip to main content

Analysis of Proteomic Spectral Data by Multi Resolution Analysis and Self-Organizing Maps

  • Conference paper
Applications of Fuzzy Sets Theory (WILF 2007)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 4578))

Included in the following conference series:

  • 2100 Accesses

Abstract

Analysis and visualization of high-dimensional clinical proteomic spectra obtained from mass spectrometric measurements is a complicated issue. We present a wavelet based preprocessing combined with an unsupervised and supervised analysis by Self-Organizing Maps and a fuzzy variant thereof. This leads to an optimal encoding and a robust classifier incorporating the possibility of fuzzy labels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Villanueva, J., Philip, J., Entenberg, D., C.C., et al.: Serum peptide profiling by magnetic particle-assisted, automated sample processing and maldi-tof mass spectrometry. Anal. Chem. 76, 1560–1570 (2004)

    Article  Google Scholar 

  2. Ketterlinus, R., Hsieh, S.Y., Teng, S.H., Lee, H., Pusch, W.: Fishing for biomarkers: analyzing mass spectrometry data with the new clinprotools software. Bio techniques 38(6), 37–40 (2005)

    Google Scholar 

  3. Kohonen, T.: Self-Organizing Maps. Springer Series in Information Sciences, vol. 30. Springer, Berlin, Heidelberg, (2nd Ext. Ed. 1997) (1995)

    Google Scholar 

  4. Schleif, F.M., Elssner, T., Kostrzewa, M., Villmann, T., Hammer, B.: Analysis and visualization of proteomic data by fuzzy labeled self organizing maps. In: Proc. of CBMS 2006, pp. 919–924 (2006)

    Google Scholar 

  5. Haykin, S.: Neural Networks. In: A Comp. Found. Macmillan, New York (1994)

    Google Scholar 

  6. Waagen, D., Cassabaum, M., Scott, C., Schmitt, H.: Exploring alternative wavelet base selection techniques with application to high resolution radar classification. In: ISIF 2003. Proc. of the 6th Int. Conf. on Inf. Fusion, pp. 1078–1085. IEEE Press, New York (2003)

    Google Scholar 

  7. Louis, A.K., Maaß, P.A.R.: Wavelets: Theory and Applications. Wiley, Chichester (1998)

    Google Scholar 

  8. Leung, A., Chau, F., Gao, J.: A review on applications of wavelet transform techniques in chemical analysis: 1989-1997. Chem. and Int. Lab. Sys. 43(1), 165–184(20) (1998)

    Google Scholar 

  9. Cohen, A., Daubechies, I., Feauveau, J.C.: Biorthogonal bases of compactly supported wavelets. Comm. Pure Appl. Math. 45(5), 485–560 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Heskes, T.: Energy functions for self-organizing maps. In: Oja, E., Kaski, S. (eds.) Kohonen Maps, pp. 303–316. Elsevier, Amsterdam (1999)

    Chapter  Google Scholar 

  11. Villmann, T., Schleif, F.M., Hammer, B.: Comparison of relevance learning vector quantization with other metric adaptive classification methods. Neural Networks 19(15), 610–622 (2005)

    Google Scholar 

  12. Villmann, T., Der, R., Herrmann, M., Martinetz, T.: Topology Preservation in Self–Organizing Feature Maps: Exact Definition and Measurement. IEEE Transactions on Neural Networks 8(2), 256–266 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Francesco Masulli Sushmita Mitra Gabriella Pasi

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schleif, FM., Villmann, T., Hammer, B. (2007). Analysis of Proteomic Spectral Data by Multi Resolution Analysis and Self-Organizing Maps. In: Masulli, F., Mitra, S., Pasi, G. (eds) Applications of Fuzzy Sets Theory. WILF 2007. Lecture Notes in Computer Science(), vol 4578. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-73400-0_72

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-73400-0_72

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-73399-7

  • Online ISBN: 978-3-540-73400-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics